1
|
Zeger L, Barasa P, Han Y, Hellgren J, Redwan IN, Reiche ME, Florin G, Christoffersson G, Kozlova EN. Microgravity Effect on Pancreatic Islets. Cells 2024; 13:1588. [PMID: 39329769 PMCID: PMC11430520 DOI: 10.3390/cells13181588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
We previously demonstrated that boundary cap neural crest stem cells (BCs) induce the proliferation of beta-cells in vitro, increase survival of pancreatic islets (PIs) in vivo after transplantation, and themselves strongly increase their proliferation capacity after exposure to space conditions. Therefore, we asked if space conditions can induce the proliferation of beta-cells when PIs are alone or together with BCs in free-floating or 3D-printed form. During the MASER 15 sounding rocket experiment, half of the cells were exposed to 6 min of microgravity (µg), whereas another group of cells were kept in 1 g conditions in a centrifuge onboard. The proliferation marker EdU was added to the cells just before the rocket reached µg conditions. The morphological assessment revealed that PIs successfully survived and strongly proliferated, particularly in the free-floating condition, though the fusion of PIs hampered statistical analysis. Proliferation of beta-cells was displayed in 3D-printed islets two weeks after µg exposure, suggesting that the effects of µg may be delayed. Thus, PIs in 3D-printed scaffolds did not fuse, and this preparation is more suitable than free-floating specimens for morphological analysis in µg studies. PIs maintained their increased proliferation capacity for weeks after µg exposure, an effect that may not appear directly, but can emerge after a delay.
Collapse
Affiliation(s)
- Lukas Zeger
- Regenerative Neurobiology, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden; (L.Z.); (Y.H.)
| | - Povilas Barasa
- Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania;
| | - Yilin Han
- Regenerative Neurobiology, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden; (L.Z.); (Y.H.)
| | - Josefin Hellgren
- CELLINK Bioprinting AB, Langfilsgatan 7, 41277 Gothenburg, Sweden; (J.H.); (I.N.R.)
| | - Itedale Namro Redwan
- CELLINK Bioprinting AB, Langfilsgatan 7, 41277 Gothenburg, Sweden; (J.H.); (I.N.R.)
| | - Myrthe E. Reiche
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, 75310 Uppsala, Sweden; (M.E.R.); (G.C.)
| | | | - Gustaf Christoffersson
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, 75310 Uppsala, Sweden; (M.E.R.); (G.C.)
| | - Elena N. Kozlova
- Regenerative Neurobiology, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden; (L.Z.); (Y.H.)
| |
Collapse
|
2
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Al-Adsani AM, Al-Qattan KK. Among Other Tissues, Short-Term Garlic Oral Treatment Incrementally Improves Indicants of Only Pancreatic Islets of Langerhans Histology and Insulin mRNA Transcription and Synthesis in Diabetic Rats. BIOLOGY 2024; 13:355. [PMID: 38785837 PMCID: PMC11117606 DOI: 10.3390/biology13050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The source, mRNA transcription, and synthesis of insulin in the pancreas, in addition to the bile duct and liver, in streptozotocin (STZ)-induced diabetic rats (DR) in response to garlic oral treatment are not yet clear. OBJECTIVE This study investigated the accumulative effects of continued garlic oral treatment on changes in the pancreas, bile duct, and liver with regards to: 1-Insulin mRNA transcription, synthesis, and concentration in relation to changes in serum insulin (SI); 2-Insulinogenic cells insulin intensity and distribution, proliferation, and morphology. METHOD Fasting blood glucose (FBG) and insulin concentration in serum and pancreas (PI) and sources and mRNA transcription in the pancreas, bile duct, and liver in normal rats given normal saline (NR-NS) and DR given either NS (DR-NS) or garlic extract (DR-GE) before and after 1, 4, and 8 weeks of oral treatment were examined. RESULTS Compared to NR-NS, DR-NS showed a significant increase in FBG and reductions in SI and PI and deterioration in islets histology, associated pancreatic insulin numerical intensities, and mRNA transcription. However, compared to DR-NS, the targeted biochemical, histological, and genetic variables of DR-GE were significantly and incrementally improved as garlic treatment continued. Insulin or its indicators were not detected either in the bile duct or the liver in DR-GE. CONCLUSIONS 8 weeks of garlic oral treatment is enough to incrementally restore only pancreatic islets of Langerhans insulin intensity and insulinogenic cells proliferation, morphology, and distribution. These indices were associated with enhanced pancreatic insulin mRNA transcription and synthesis. Eight weeks of garlic treatment were not enough to stimulate insulinogenesis in either the bile duct or the liver.
Collapse
Affiliation(s)
- Amani M Al-Adsani
- Department of Biological Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait City 13060, Kuwait
| | - Khaled K Al-Qattan
- Department of Biological Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait City 13060, Kuwait
| |
Collapse
|
4
|
Gooch AM, Chowdhury SS, Zhang PM, Hu ZM, Westenfelder C. Significant expansion of the donor pool achieved by utilizing islets of variable quality in the production of allogeneic "Neo-Islets", 3-D organoids of Mesenchymal Stromal and islet cells, a novel immune-isolating biotherapy for Type I Diabetes. PLoS One 2023; 18:e0290460. [PMID: 37616230 PMCID: PMC10449143 DOI: 10.1371/journal.pone.0290460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Novel biotherapies for Type 1 Diabetes that provide a significantly expanded donor pool and that deliver all islet hormones without requiring anti-rejection drugs are urgently needed. Scoring systems have improved islet allotransplantation outcomes, but their use may potentially result in the waste of valuable cells for novel therapies. To address these issues, we created "Neo-Islets" (NIs), islet-sized organoids, by co-culturing in ultralow adhesion flasks culture-expanded islet (ICs) and Mesenchymal Stromal Cells (MSCs) (x 24 hrs, 1:1 ratio). The MSCs exert powerful immune- and cyto-protective, anti-inflammatory, proangiogenic, and other beneficial actions in NIs. The robust in vitro expansion of all islet hormone-producing cells is coupled to their expected progressive de-differentiation mediated by serum-induced cell cycle entry and Epithelial-Mesenchymal Transition (EMT). Re-differentiation in vivo of the ICs and resumption of their physiological functions occurs by reversal of EMT and serum withdrawal-induced exit from the cell cycle. Accordingly, we reported that allogeneic, i.p.-administered NIs engraft in the omentum, increase Treg numbers and reestablish permanent normoglycemia in autoimmune diabetic NOD mice without immunosuppression. Our FDA-guided pilot study (INAD 012-0776) in insulin-dependent pet dogs showed similar responses, and both human- and canine-NIs established normoglycemia in STZ-diabetic NOD/SCID mice even though the utilized islets would be scored as unsuitable for transplantation. The present study further demonstrates that islet gene expression profiles (α, β, γ, δ) in human "non-clinical grade" islets obtained from diverse, non-diabetic human and canine donors (n = 6 each) closely correlate with population doublings, and the in vivo re-differentiation of endocrine islet cells clearly corresponds with the reestablishment of euglycemia in diabetic mice. Conclusion: human-NIs created from diverse, "non-clinical grade" donors have the potential to greatly expand patient access to this curative therapy of T1DM, facilitated by the efficient in vitro expansion of ICs that can produce ~ 270 therapeutic NI doses per donor for 70 kg recipients.
Collapse
Affiliation(s)
- Anna M. Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
| | | | - Ping M. Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
| | - Zhuma M. Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
| | - Christof Westenfelder
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of Ameirca
- University of Utah, Health Sciences Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
5
|
Montanucci P, Pescara T, Greco A, Basta G, Calafiore R. Human induced pluripotent stem cells (hiPSC), enveloped in elastin-like recombinamers for cell therapy of type 1 diabetes mellitus (T1D): preliminary data. Front Bioeng Biotechnol 2023; 11:1046206. [PMID: 37180045 PMCID: PMC10166868 DOI: 10.3389/fbioe.2023.1046206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Therapeutic application and study of type 1 diabetes disease could benefit from the use of functional β islet-like cells derived from human induced pluripotent stem cells (hiPSCs). Considerable efforts have been made to develop increasingly effective hiPSC differentiation protocols, although critical issues related to cost, the percentage of differentiated cells that are obtained, and reproducibility remain open. In addition, transplantation of hiPSC would require immunoprotection within encapsulation devices, to make the construct invisible to the host's immune system and consequently avoid the recipient's general pharmacologic immunosuppression. Methods: For this work, a microencapsulation system based on the use of "human elastin-like recombinamers" (ELRs) was tested to envelop hiPSC. Special attention was devoted to in vitro and in vivo characterization of the hiPSCs upon coating with ERLs. Results and Discussion: We observed that ELRs coating did not interfere with viability and function and other biological properties of differentiated hiPSCs, while in vivo, ELRs seemed to afford immunoprotection to the cell grafts in preliminary in vivo study. The construct ability to correct hyperglycemia in vivo is in actual progress.
Collapse
|
6
|
Mahnashi MH, Alam W, Huneif MA, Abdulwahab A, Alzahrani MJ, Alshaibari KS, Rashid U, Sadiq A, Jan MS. Exploration of Succinimide Derivative as a Multi-Target, Anti-Diabetic Agent: In Vitro and In Vivo Approaches. Molecules 2023; 28:molecules28041589. [PMID: 36838577 PMCID: PMC9964140 DOI: 10.3390/molecules28041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is counted among one of the leading challenges in the recent era, and it is a life-threatening disorder. Compound 4-hydroxy 3-methoxy phenylacetone (compound 1) was previously isolated from Polygonum aviculare. This compound was reacted with N-benzylmaleimide to synthesize the targeted compound 3. The purpose of this research is to exhibit our developed compound 3's ability to concurrently inhibit many targets that are responsible for hyperglycemia. Compound 3 was capable of inhibiting α-amylase, α-glucosidase, and protein tyrosine phosphatase 1 B. Even so, outstanding in vitro inhibition was shown by the compound against dipeptidyl peptidase-4 (DPP-4) with an IC50 value of 0.07 µM. Additionally, by using DPPH in the antioxidant activity, it exhibited good antioxidant potential. Similarly, in the in vivo activity, the experimental mice proved to be safe by treatment with compound 3. After 21 days of examination, the compound 3 activity pattern was found to be effective in experimental mice. Compound 3 decreased the excess peak of total triglycerides, total cholesterol, AST, ALT, ALP, LDL, BUN, and creatinine in the STZ-induced diabetic mice. Likewise, the histopathology of the kidneys, liver, and pancreas of the treated animals was also evaluated. Overall, the succinimde moiety, such as compound 3, can affect several targets simultaneously, and, finally, we were successful in synthesizing a multi-targeted preclinical therapy.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mohammed A. Huneif
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | - Alqahtani Abdulwahab
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | | | - Khaled S. Alshaibari
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | - Umar Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
- Correspondence: (A.S.); (M.S.J.)
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda 24420, Pakistan
- Correspondence: (A.S.); (M.S.J.)
| |
Collapse
|
7
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
8
|
Porter JM, Guerassimoff L, Castiello FR, Charette A, Tabrizian M. INGAP-Peptide Variants as a Novel Therapy for Type 1 Diabetes: Effect on Human Islet Insulin Secretion and Gene Expression. Pharmaceutics 2022; 14:pharmaceutics14091833. [PMID: 36145580 PMCID: PMC9502412 DOI: 10.3390/pharmaceutics14091833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Islet transplantation offers a long-term cure for Type 1 Diabetes (T1D), freeing patients from daily insulin injections. Therapeutic peptides have shown potential to increase the insulin output of pancreatic islets, maximizing the impact of grafted cells. The islet neogenesis-associated protein (INGAP), and its bioactive core (INGAP-P), stimulate beta-cell function and viability, offering the possibility for islet treatment prior to implant. However, dosing efficacy is limited by low circulation time and enzyme degradation. This proof-of-concept study presents the investigation of novel molecular variants of INGAP-P to find a more bioactive form. Custom-designed peptide variants of INGAP-P were synthesized and tested for their effect on the insulin secretion and gene expression of live human islets. We exposed the live islets of five donors to varying glucose concentrations with INGAP-P variants in solution. We identified four peptide variants (I9, I15Tyr, I19 and I15Cys) which displayed statistically significant enhancements over negative controls (representing a 1.6–2.8-fold increase in stimulation index). This is the first study that has assessed these INGAP-P variants in human islets. It highlights the potential for customized peptides for type 1 diabetes therapy and provides a foundation for future peptide-screening experiments.
Collapse
Affiliation(s)
- James M. Porter
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Léa Guerassimoff
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Campus MIL, l’Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Francisco Rafael Castiello
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - André Charette
- Campus MIL, l’Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Maryam Tabrizian
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
9
|
Pylaev TE, Smyshlyaeva IV, Popyhova EB. Regeneration of β-cells of the islet apparatus of the pancreas. Literature review. DIABETES MELLITUS 2022. [DOI: 10.14341/dm12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes of both type 1 and type 2 is characterized by a progressive loss of β-cell mass, which contributes to the disruption of glucose homeostasis. The optimal antidiabetic therapy would be simple replacement of lost cells, but at present, many researchers have shown that the pancreas (PZ) of adults has a limited regenerative potential. In this regard, significant efforts of researchers are directed to methods of inducing the proliferation of β-cells, stimulating the formation of β-cells from alternative endogenous sources and/or the generation of β-cells from pluripotent stem cells. Factors that regulate β-cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways and potential pharmaceuticals, are also being intensively studied. In this review, we consider recent scientific studies carried out in the field of studying the development and regeneration of insulin-producing cells obtained from exogenous and endogenous sources and their use in the treatment of diabetes. The literature search while writing this review was carried out using the databases of the RSIC, CyberLeninka, Scopus, Web of Science, MedLine, PubMed for the period from 2005 to 2021. using the following keywords: diabetes mellitus, pancreas, regeneration, β-cells, stem cells, diabetes therapy.
Collapse
|
10
|
Basile G, Qadir MMF, Mauvais-Jarvis F, Vetere A, Shoba V, Modell AE, Pastori RL, Russ HA, Wagner BK, Dominguez-Bendala J. Emerging diabetes therapies: Bringing back the β-cells. Mol Metab 2022; 60:101477. [PMID: 35331962 PMCID: PMC8987999 DOI: 10.1016/j.molmet.2022.101477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.
Collapse
Affiliation(s)
- G Basile
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - M M F Qadir
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - F Mauvais-Jarvis
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - A Vetere
- Broad Institute, Cambridge, MA, USA
| | - V Shoba
- Broad Institute, Cambridge, MA, USA
| | | | - R L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H A Russ
- Barbara Davis Center for Diabetes, Colorado University Anschutz Medical Campus, Aurora, CO, USA.
| | | | - J Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
Spears E, Serafimidis I, Powers AC, Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Front Endocrinol (Lausanne) 2021; 12:722250. [PMID: 34421829 PMCID: PMC8378310 DOI: 10.3389/fendo.2021.722250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
In all forms of diabetes, β cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new β cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for β cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new β cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| |
Collapse
|