1
|
Yang S, Amberger M, Wennmann JT, Jehle JA. Transcriptome analysis of CpGV in midguts of type II resistant codling moth larvae and identification of contaminant infections by SNP mapping of RNA-Seq data. J Virol 2024; 98:e0053724. [PMID: 38934597 PMCID: PMC11265400 DOI: 10.1128/jvi.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Various isolates of the Cydia pomonella granulovirus (CpGV) are used as insect pest control agents against codling moth (CM, Cydia pomonella L.), a predominant pest in apple orchards. Three different types (I-III) of dominantly inherited field resistance of CM larvae to CpGV have been recently identified. In this study, transcription of virus genes in midgut cells of type II-resistant CM larvae infected with different CpGV isolates, i.e., CpGV-M and CpGV-S (both prone to type II resistance) as well as CpGV-E2 (breaking type II resistance) was determined by strand-specific RNA sequencing (RNA-Seq) at an early infection stage (72 h post infection). Based on principal component analysis of read counts and the quantitative distribution of single nucleotide polymorphisms (SNPs) in the RNA-Seq data, a bioinformatics analysis pipeline was developed for an a posteriori identification of the infective agents. We report that (i) identification of infective agent is crucial, especially in in vivo infection experiments, when activation of covert virus infections is a possibility, (ii) no substantial difference between CpGV-M and CpGV-S transcription was found in type II-resistant CM larvae despite a different resistance mechanism, (iii) the transcription level of CpGV-M and CpGV-S was much lower than that of CpGV-E2, and (iv) orf59 (sod), orf89 (pif-6), orf92 (p18), and orf137 (lef-10) were identified as significantly downregulated genes in resistance-prone isolates CpGV-M and CpGV-S. For type II resistance of CM larvae, we conclude that CpGV-M and CpGV-S are both able to enter midgut cells, but viral transcription is significantly impaired at an early stage of infection compared to the resistance-breaking isolate CpGV-E2. IMPORTANCE CpGV is a highly virulent pathogen of codling moth, and it has been developed into one of the most successful commercial baculovirus biocontrol agents for pome fruit production worldwide. The emergence of field resistance in codling moth to commercial CpGV products is a threat toward the sustainable use of CpGV. In recent years, different types of resistance (type I-III) were identified. For type II resistance, very little is known regarding the infection process. By studying the virus gene expression patterns of different CpGV isolates in midguts of type II-resistant codling moth larvae, we found that the type II resistance mechanism is most likely based on intracellular factors rather than a receptor component. By applying SNP mapping of the RNA-Seq data, we further emphasize the importance of identifying the infective agents in in vivo experiments when activation of a covert infection cannot be excluded.
Collapse
Affiliation(s)
- Shili Yang
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Maximilian Amberger
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Johannes A. Jehle
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| |
Collapse
|
2
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
3
|
Nolasco M, Mariano DOC, Pimenta DC, Biondi I, Branco A. Proteomic analyses of venom from a Spider Hawk, Pepsis decorata. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220090. [PMID: 37965483 PMCID: PMC10642949 DOI: 10.1590/1678-9199-jvatitd-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background The composition of the venom from solitary wasps is poorly known, although these animals are considered sources of bioactive substances. Until the present moment, there is only one proteomic characterization of the venom of wasps of the family Pompilidae and this is the first proteomic characterization for the genus Pepsis. Methods To elucidate the components of Pepsis decorata venom, the present work sought to identify proteins using four different experimental conditions, namely: (A) crude venom; (B) reduced and alkylated venom; (C) trypsin-digested reduced and alkylated venom, and; (D) chymotrypsin-digested reduced and alkylated venom. Furthermore, three different mass spectrometers were used (Ion Trap-Time of Flight, Quadrupole-Time of Flight, and Linear Triple Quadruple). Results Proteomics analysis revealed the existence of different enzymes related to the insect's physiology in the venom composition. Besides toxins, angiotensin-converting enzyme (ACE), hyaluronidase, and Kunitz-type inhibitors were also identified. Conclusion The data showed that the venom of Pepsis decorata is mostly composed of proteins involved in the metabolism of arthropods, as occurs in parasitic wasps, although some classical toxins were recorded, and among them, for the first time, ACE was found in the venom of solitary wasps. This integrative approach expanded the range of compounds identified in protein analyses, proving to be efficient in the proteomic characterization of little-known species. It is our understanding that the current work will provide a solid base for future studies dealing with other Hymenoptera venoms.
Collapse
Affiliation(s)
- Matheus Nolasco
- Graduate Program in Biotechnology, Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Douglas O. C. Mariano
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil
| | - Daniel C. Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil
| | - Ilka Biondi
- Laboratory of Venomous Animals and Herpetology. Biology Department, State University of Feira de Santana - UEFS, Feira de Santana, BA, Brazil
| | - Alexsandro Branco
- Phytochemistry Laboratory, Health Department, State University of Feira de Santana - UEFS, Feira de Santana, BA, Brazil
| |
Collapse
|
4
|
Amorós Morales LC, Marchesini A, Gómez Bergna SM, García Fallit M, Tongiani SE, Vásquez L, Ferrelli ML, Videla-Richardson GA, Candolfi M, Romanowski V, Pidre ML. PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses 2023; 15:1984. [PMID: 37896762 PMCID: PMC10610652 DOI: 10.3390/v15101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance. To achieve this goal, we developed a highly versatile baculoviral transfer vector generation system called PluriBAC. The PluriBAC system consists of three insert entry levels using Golden Gate assembly technology. The wide availability of vectors and sticky ends allows enough versatility to combine more than four different promoters, genes of interest, and terminator sequences. Here, we report not only the rational design of the PluriBAC system but also its use for the generation of baculoviral reporter vectors applied to different fields of biotechnology. We demonstrated that recombinant AcMNPV baculoviruses generated with the PluriBAC system were capable of infecting Spodoptera frugiperda larvae. On the other hand, we found that the recombinant budded virions (BV) generated using our system were capable of transducing different types of tumor and normal cells both in vitro and in vivo. Our findings suggest that the PluriBAC system could constitute a versatile tool for the generation of insecticide and gene therapy vectors.
Collapse
Affiliation(s)
- Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Santiago M. Gómez Bergna
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías García Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Silvana E. Tongiani
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Larisa Vásquez
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Ciudad Autónoma de Buenos Aires C1121A6B, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| |
Collapse
|
5
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Resistance Monitoring for Six Insecticides in Vegetable Field-Collected Populations of Spodoptera litura from China. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The common cutworm, Spodoptera litura (Fabricius), is a notorious and damaging insect pest of horticultural crops in China, the management of which largely relies on chemical agents that are limited by the development of chemical resistance in target populations. As such, resistance monitoring of S. litura populations is a necessary part of management strategies of insecticide resistance. In the current work, we monitored resistance to six insecticides in field-collected populations of S. litura sampled from eleven provinces across China in 2021. The results show that S. litura populations developed significant resistance against chlorantraniliprole, cyantraniliprole, metaflumizone, and pyridalyl and low levels of resistance to chromafenozide. However, S. litura populations were susceptible or exhibited minimal resistance to tetraniliprole. Possible cross-resistances between chlorantraniliprole, cyantraniliprole, metaflumizone, pyridalyl, and chromafenozide were found by pairwise correlation, which also revealed that tetraniliprole lacked cross-resistance with all insecticides tested. Our results suggest suspending the use of chemical agents against which S. litura displayed significant field-evolved resistance, such as chlorantraniliprole, metaflumizone, and pyridalyl, in favor of pesticides against which S. litura was susceptible or exhibited minimal resistance, such as tetraniliprole and chromafenozide, which may help slow the development of insecticide resistance, and in which field management programs aimed at controlling S. litura in China would benefit from the integration of such survey-informed insecticide application strategies. Moreover, the baseline susceptibility confirmed for the six tested insecticides can contribute to design strategies of resistance management for S. litura.
Collapse
|