1
|
Taniguchi K, Kaneko N, Wada M, Moriyama S, Nakajima S, Mimura M, Noda Y. Neurophysiological profiles of patients with bipolar disorders as probed with transcranial magnetic stimulation: A systematic review. Neuropsychopharmacol Rep 2024; 44:572-584. [PMID: 38932486 PMCID: PMC11544454 DOI: 10.1002/npr2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
AIM Bipolar disorder (BD) has a significant impact on global health, yet its neurophysiological basis remains poorly understood. Conventional treatments have limitations, highlighting the need for a better understanding of the neurophysiology of BD for early diagnosis and novel therapeutic strategies. DESIGN Employing a systematic review approach of the PRISMA guidelines, this study assessed the usefulness and validity of transcranial magnetic stimulation (TMS) neurophysiology in patients with BD. METHODS Databases searched included PubMed, MEDLINE, Embase, and PsycINFO, covering studies from January 1985 to January 2024. RESULTS Out of 6597 articles screened, nine studies met the inclusion criteria, providing neurophysiological insights into the pathophysiological basis of BD using TMS-electromyography and TMS-electroencephalography methods. Findings revealed significant neurophysiological impairments in patients with BD compared to healthy controls, specifically in cortical inhibition and excitability. In particular, short-interval cortical inhibition (SICI) was consistently diminished in BD across the studies, which suggests a fundamental impairment of cortical inhibitory function in BD. This systematic review corroborates the potential utility of TMS neurophysiology in elucidating the pathophysiological basis of BD. Specifically, the reduced cortical inhibition in the SICI paradigm observed in patients with BD suggests gamma-aminobutyric acid (GABA)-A receptor-mediated dysfunction, but results from other TMS paradigms have been inconsistent. Thus, complex neurophysiological processes may be involved in the pathological basis underlying BD. This study demonstrated that BD has a neural basis involving impaired GABAergic function, and it is highly expected that further research on TMS neurophysiology will further elucidate the pathophysiological basis of BD.
Collapse
Affiliation(s)
- Keita Taniguchi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Naotsugu Kaneko
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Masataka Wada
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Sotaro Moriyama
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | | | - Masaru Mimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Yoshihiro Noda
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| |
Collapse
|
2
|
Jung SR, Lee JH, Ryu H, Gao Y, Lee J. Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:31-38. [PMID: 38154962 PMCID: PMC10762486 DOI: 10.4196/kjpp.2024.28.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
As in type 1 diabetes, the loss of pancreatic β-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting β-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exerciseinduced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.
Collapse
Affiliation(s)
- Su-Ryun Jung
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu 42415, Korea
| | - Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
3
|
Le HTN, Rijal S, Jang SH, Park SA, Park SJ, Jung W, Han SK. Inhibitory Effects of Honokiol on Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Juvenile Mice. Neuroscience 2023; 521:89-101. [PMID: 37142181 DOI: 10.1016/j.neuroscience.2023.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are known to be abundant in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc). Thus, it has been recognized as an initial synaptic site for regulating orofacial nociceptive stimuli. Honokiol, a principal active ingredient derived from the bark of Magnolia officinalis, has been exploited in traditional remedies with multiple biological effects, including anti-nociception on humans. However, the anti-nociceptive mechanism of honokiol on SG neurons of the Vc remains fully elusive. In this study, effects of honokiol on SG neurons of the Vc in mice were investigated using the whole-cell patch-clamp method. In a concentration-dependent manner, honokiol significantly enhanced frequencies of spontaneous postsynaptic currents (sPSCs) that were independent of action potential generation. Notably, honokiol-induced increase in the frequency of sPSCs was attributed to the release of inhibitory neurotransmitters through both glycinergic and GABAergic pre-synaptic terminals. Furthermore, higher concentration of honokiol induced inward currents that were noticeably attenuated in the presence of picrotoxin (a GABAA receptor antagonist) or strychnine (a glycine receptor antagonist). Honokiol also exhibited potentiation effect on glycine- and GABAA receptor-mediated responses. In inflammatory pain model, the increase in frequency of spontaneous firing on SG neurons induced by formalin was significantly inhibited by the application of honokiol. Altogether, these findings indicate that honokiol might directly affect SG neurons of the Vc to facilitate glycinergic and GABAergic neurotransmissions and modulate nociceptive synaptic transmission against pain. Consequently, the inhibitory effect of honokiol in the central nociceptive system contributes to orofacial pain management.
Collapse
Affiliation(s)
- Ha Thuy Nhung Le
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea; Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Viet Nam
| | - Santosh Rijal
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seon Ah Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
4
|
Johnson BO, Oke O, Nwabueze C, Azam M, Ogunlesi CY. Lithium-Induced Sialorrhea. Cureus 2023; 15:e38370. [PMID: 37265879 PMCID: PMC10230319 DOI: 10.7759/cureus.38370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Lithium is a mood stabilizer frequently used in psychiatry to treat bipolar disorder. Because lithium has a narrow therapeutic index, it requires frequent monitoring for its toxicity. Lithium toxicity requires monitoring of serum lithium and clinical assessment by clinicians. Sialorrhea, also known as excessive drooling, hypersalivation, or ptyalism, is common among psychiatric patients. Sialorrhea, an infrequent and embarrassing side effect of lithium, has been reported at varying serum levels, either at subtherapeutic or in the normal range. Here, we present the case of a patient with sialorrhea associated with oral lithium therapy at the subtherapeutic serum level.
Collapse
Affiliation(s)
| | - Oluwaseun Oke
- Department of Psychiatry, Interfaith Medical Center, Brooklyn, USA
| | | | - Muhammad Azam
- Department of Psychiatry, Interfaith Medical Center, Brooklyn, USA
| | | |
Collapse
|
5
|
Lithium Biological Action Mechanisms after Ischemic Stroke. Life (Basel) 2022; 12:life12111680. [DOI: 10.3390/life12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lithium is a source of great scientific interest because although it has such a simple structure, relatively easy-to-analyze chemistry, and well-established physical properties, the plethora of effects on biological systems—which influence numerous cellular and molecular processes through not entirely explained mechanisms of action—generate a mystery that modern science is still trying to decipher. Lithium has multiple effects on neurotransmitter-mediated receptor signaling, ion transport, signaling cascades, hormonal regulation, circadian rhythm, and gene expression. The biochemical mechanisms of lithium action appear to be multifactorial and interrelated with the functioning of several enzymes, hormones, vitamins, and growth and transformation factors. The widespread and chaotic marketing of lithium salts in potions and mineral waters, always at inadequate concentrations for various diseases, has contributed to the general disillusionment with empirical medical hypotheses about the therapeutic role of lithium. Lithium salts were first used therapeutically in 1850 to relieve the symptoms of gout, rheumatism, and kidney stones. In 1949, Cade was credited with discovering the sedative effect of lithium salts in the state of manic agitation, but frequent cases of intoxication accompanied the therapy. In the 1960s, lithium was shown to prevent manic and also depressive recurrences. This prophylactic effect was first demonstrated in an open-label study using the “mirror” method and was later (after 1970) confirmed by several placebo-controlled double-blind studies. Lithium prophylaxis was similarly effective in bipolar and also unipolar patients. In 1967, the therapeutic value of lithemia was determined, included in the range of 0.5–1.5 mEq/L. Recently, new therapeutic perspectives on lithium are connected with improved neurological outcomes after ischemic stroke. The effects of lithium on the development and maintenance of neuroprotection can be divided into two categories: short-term effects and long-term effects. Unfortunately, the existing studies do not fully explain the lithium biological action mechanisms after ischemic stroke.
Collapse
|
6
|
Kamal ZM, Dutta S, Rahman S, Etando A, Hasan E, Nahar SN, Wan Ahmad Fakuradzi WFS, Sinha S, Haque M, Ahmad R. Therapeutic Application of Lithium in Bipolar Disorders: A Brief Review. Cureus 2022; 14:e29332. [PMID: 36159362 PMCID: PMC9484534 DOI: 10.7759/cureus.29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
|
7
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|