1
|
Simoes FA, Christoforidou E, Cassel R, Dupuis L, Hafezparast M. Severe dynein dysfunction in cholinergic neurons exacerbates ALS-like phenotypes in a new mouse model. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167540. [PMID: 39428001 DOI: 10.1016/j.bbadis.2024.167540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Cytoplasmic dynein 1, a motor protein essential for retrograde axonal transport, is increasingly implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). In this study, we developed a novel mouse model that combines the Legs at odd angles (Loa, F580Y) point mutation in the dynein heavy chain with a cholinergic neuron-specific knockout of the dynein heavy chain. This model, for the first time, allows us to investigate the impact of Loa allele exclusivity in these neurons into adulthood. Our findings reveal that this selective increase in dynein dysfunction exacerbated the phenotypes observed in heterozygous Loa mice including pre-wean survival, reduced body weight and grip strength. Additionally, it induced ALS-like pathology in neuromuscular junctions (NMJs) not seen in heterozygous Loa mice. Notably, we also found a previously unobserved significant increase in neurons displaying TDP-43 puncta in both Loa mutants, suggesting early TDP-43 mislocalisation - a hallmark of ALS. The novel model also exhibited a concurrent rise in p62 puncta that did not co-localise with TDP-43, indicating broader impairments in autophagic clearance mechanisms. Overall, this new model underscores the fact that dynein impairment alone can induce ALS-like pathology and provides a valuable platform to further explore the role of dynein in ALS.
Collapse
Affiliation(s)
- Fabio A Simoes
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Eleni Christoforidou
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | - Luc Dupuis
- University of Strasbourg, INSERM, UMR-S1329, Strasbourg, France
| | - Majid Hafezparast
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
2
|
Zeng J, Luo C, Jiang Y, Hu T, Lin B, Xie Y, Lan J, Miao J. Decoding TDP-43: the molecular chameleon of neurodegenerative diseases. Acta Neuropathol Commun 2024; 12:205. [PMID: 39736783 DOI: 10.1186/s40478-024-01914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis. Particular emphasis is placed on recent discoveries regarding TDP-43's involvement in DNA interactions and chromatin dynamics, highlighting its broader impact on gene expression and genome stability. The review also examines the complex pathogenesis of TDP-43-related disorders, discussing the protein's propensity for aggregation, its effects on mitochondrial function, and its non-cell autonomous impacts on glial cells. We provide an in-depth analysis of TDP-43 pathology across various neurodegenerative conditions, from well-established associations in ALS and FTLD to emerging roles in diseases such as Huntington's disease and Niemann-Pick C disease. The potential of TDP-43 as a therapeutic target is explored, with a focus on recent developments in targeting cryptic exon inclusion and other TDP-43-mediated processes. This review synthesizes current knowledge on TDP-43 biology and pathology, offering insights into the protein's central role in neurodegeneration and highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Jixiang Zeng
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Chunmei Luo
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yang Jiang
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Tao Hu
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Bixia Lin
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Yuanfang Xie
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China
| | - Jiao Lan
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| | - Jifei Miao
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
| |
Collapse
|
3
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
4
|
Luan T, Li Q, Huang Z, Feng Y, Xu D, Zhou Y, Hu Y, Wang T. Axonopathy Underlying Amyotrophic Lateral Sclerosis: Unraveling Complex Pathways and Therapeutic Insights. Neurosci Bull 2024; 40:1789-1810. [PMID: 39097850 PMCID: PMC11607281 DOI: 10.1007/s12264-024-01267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 08/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by progressive axonopathy, jointly leading to the dying back of the motor neuron, disrupting both nerve signaling and motor control. In this review, we highlight the roles of axonopathy in ALS progression, driven by the interplay of multiple factors including defective trafficking machinery, protein aggregation, and mitochondrial dysfunction. Dysfunctional intracellular transport, caused by disruptions in microtubules, molecular motors, and adaptors, has been identified as a key contributor to disease progression. Aberrant protein aggregation involving TDP-43, FUS, SOD1, and dipeptide repeat proteins further amplifies neuronal toxicity. Mitochondrial defects lead to ATP depletion, oxidative stress, and Ca2+ imbalance, which are regarded as key factors underlying the loss of neuromuscular junctions and axonopathy. Mitigating these defects through interventions including neurotrophic treatments offers therapeutic potential. Collaborative research efforts aim to unravel ALS complexities, opening avenues for holistic interventions that target diverse pathological mechanisms.
Collapse
Affiliation(s)
- Tongshu Luan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Li
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Huang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Duo Xu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yujie Zhou
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yiqing Hu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
5
|
Dafinca R, Tosat-Bitrian C, Carroll E, Vahsen BF, Gilbert-Jaramillo J, Scaber J, Feneberg E, Johnson E, Talbot K. Dynactin-1 mediates rescue of impaired axonal transport due to reduced mitochondrial bioenergetics in amyotrophic lateral sclerosis motor neurons. Brain Commun 2024; 6:fcae350. [PMID: 39440303 PMCID: PMC11495216 DOI: 10.1093/braincomms/fcae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/07/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. A key pathological signature of ALS is the cytoplasmic mislocalization and aggregation of TDP-43 in affected motor neurons, which is found in 97% of cases. Recent reports have shown that mitochondrial dysfunction plays a significant role in motor neuron degeneration in ALS, and TDP-43 modulates several mitochondrial transcripts. In this study, we used induced pluripotent stem cell-derived motor neurons from ALS patients with TDP-43 mutations and a transgenic TDP-43M337V mouse model to determine how TDP-43 mutations alter mitochondrial function and axonal transport. We detected significantly reduced mitochondrial respiration and ATP production in patient induced pluripotent stem cell-derived motor neurons, linked to an interaction between TDP-43M337V with ATPB and COX5A. A downstream reduction in speed of retrograde axonal transport in patient induced pluripotent stem cell-derived motor neurons was detected, which correlated with downregulation of the motor protein complex, DCTN1/dynein. Overexpression of DCTN1 in patient induced pluripotent stem cell-derived motor neurons significantly increased the percentage of retrograde travelling mitochondria and reduced the percentage of stationary mitochondria. This study shows that ALS induced pluripotent stem cell-derived motor neurons with mutations in TDP-43 have deficiencies in essential mitochondrial functions with downstream effects on retrograde axonal transport, which can be partially rescued by DCTN1 overexpression.
Collapse
Affiliation(s)
- Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Carlota Tosat-Bitrian
- Margarita Salas Center for Biological Research, University of Madrid, Madrid 28040, Spain
| | - Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Björn F Vahsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Javier Gilbert-Jaramillo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| |
Collapse
|
6
|
Flores-Lagunes L, Del Pozo-Yauner L, Carrillo-Sánchez K, Molina-Garay C, Jiménez-Olivares M, Garcia-Solorio J, Rodríguez Corona U, Herrera GA, Ricardez-Marcial E, Alaez-Verson C. First family with Perry syndrome from Mexico. Biomed Rep 2024; 21:120. [PMID: 38978535 PMCID: PMC11229396 DOI: 10.3892/br.2024.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
Perry syndrome (PS) is a rare autosomal dominant disease characterized by parkinsonism, central hypoventilation, weight loss and depression and is caused by pathogenic mutations in the dynactin subunit 1 (DCTN1) gene (encoding p150glued protein). To date, only two cases have been reported in Latin America, specifically in Colombia and Argentina. The present study, to the best of our knowledge, reports the first recorded Mexican family with PS. The clinical features of the proband and a family history of early parkinsonism led to the suspicion of PS. The pathogenic variant NM_004082:c.212G>A, causing a (p.Gly71Glu) mutation in the p150glued protein, was identified in exon 2 of the DCTN1 gene by exome sequencing, confirming the diagnosis of PS. (p.Gly71Glu) has been previously identified in at least 4 cases of PS from different ethnic backgrounds. Genetic counseling was provided to the available family members. To clarify the impact of the (p.Gly71Glu) variant on the structure and function of the cytoskeleton-associated protein Gly rich (CAP-Gly) domain of p150glued, Glu71 mutated CAP-Gly domains were modeled and compared with the wild-type. It was hypothesized that the larger and more charged side chain of Glu may induce conformational and electrostatic changes, imposing a conformational restriction on the peptide backbone that would affect interaction with the p150glued protein partners, causing dysfunction in the dynactin protein complex.
Collapse
Affiliation(s)
- Leonardo Flores-Lagunes
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Luis Del Pozo-Yauner
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Karol Carrillo-Sánchez
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Carolina Molina-Garay
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Marco Jiménez-Olivares
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Joaquin Garcia-Solorio
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Ulises Rodríguez Corona
- Montreal Clinical Research Institute Ribonucleoprotein Biochemistry Research Unit, Montréal, Quebec H2W1R7, Canada
| | - Guillermo A. Herrera
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Edgar Ricardez-Marcial
- Department of Medical Genetics, La Raza National Medical Center, Mexican Social Security Institute, Mexico City 02990, Mexico
| | - Carmen Alaez-Verson
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| |
Collapse
|
7
|
Pottier C, Küçükali F, Baker M, Batzler A, Jenkins GD, van Blitterswijk M, Vicente CT, De Coster W, Wynants S, Van de Walle P, Ross OA, Murray ME, Faura J, Haggarty SJ, van Rooij JG, Mol MO, Hsiung GYR, Graff C, Öijerstedt L, Neumann M, Asmann Y, McDonnell SK, Baheti S, Josephs KA, Whitwell JL, Bieniek KF, Forsberg L, Heuer H, Lago AL, Geier EG, Yokoyama JS, Oddi AP, Flanagan M, Mao Q, Hodges JR, Kwok JB, Domoto-Reilly K, Synofzik M, Wilke C, Onyike C, Dickerson BC, Evers BM, Dugger BN, Munoz DG, Keith J, Zinman L, Rogaeva E, Suh E, Gefen T, Geula C, Weintraub S, Diehl-Schmid J, Farlow MR, Edbauer D, Woodruff BK, Caselli RJ, Donker Kaat LL, Huey ED, Reiman EM, Mead S, King A, Roeber S, Nana AL, Ertekin-Taner N, Knopman DS, Petersen RC, Petrucelli L, Uitti RJ, Wszolek ZK, Ramos EM, Grinberg LT, Gorno Tempini ML, Rosen HJ, Spina S, Piguet O, Grossman M, Trojanowski JQ, Keene DC, Lee-Way J, Prudlo J, Geschwind DH, Rissman RA, Cruchaga C, Ghetti B, Halliday GM, Beach TG, Serrano GE, Arzberger T, Herms J, Boxer AL, Honig LS, Vonsattel JP, Lopez OL, Kofler J, White CL, Gearing M, Glass J, Rohrer JD, Irwin DJ, Lee EB, Van Deerlin V, Castellani R, Mesulam MM, Tartaglia MC, Finger EC, Troakes C, Al-Sarraj S, Miller BL, Seelaar H, Graff-Radford NR, Boeve BF, Mackenzie IR, van Swieten JC, Seeley WW, Sleegers K, Dickson DW, Biernacka JM, Rademakers R. Deciphering Distinct Genetic Risk Factors for FTLD-TDP Pathological Subtypes via Whole-Genome Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309088. [PMID: 38978643 PMCID: PMC11230325 DOI: 10.1101/2024.06.24.24309088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.
Collapse
|
8
|
Udine E, DeJesus-Hernandez M, Tian S, das Neves SP, Crook R, Finch NA, Baker MC, Pottier C, Graff-Radford NR, Boeve BF, Petersen RC, Knopman DS, Josephs KA, Oskarsson B, Da Mesquita S, Petrucelli L, Gendron TF, Dickson DW, Rademakers R, van Blitterswijk M. Abundant transcriptomic alterations in the human cerebellum of patients with a C9orf72 repeat expansion. Acta Neuropathol 2024; 147:73. [PMID: 38641715 PMCID: PMC11031479 DOI: 10.1007/s00401-024-02720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Shulan Tian
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Richard Crook
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Cyril Pottier
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | | | | | | | | | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Bhore N, Bogacki EC, O'Callaghan B, Plun-Favreau H, Lewis PA, Herbst S. Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220517. [PMID: 38368938 PMCID: PMC10874702 DOI: 10.1098/rstb.2022.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Parkinson's disease is a progressive neurological disorder, characterized by prominent movement dysfunction. The past two decades have seen a rapid expansion of our understanding of the genetic basis of Parkinson's, initially through the identification of monogenic forms and, more recently, through genome-wide association studies identifying common risk variants. Intriguingly, a number of cellular pathways have emerged from these analysis as playing central roles in the aetiopathogenesis of Parkinson's. In this review, the impact of data deriving from genome-wide analyses for Parkinson's upon our functional understanding of the disease will be examined, with a particular focus on examples of endo-lysosomal and mitochondrial dysfunction. The challenges of moving from a genetic to a functional understanding of common risk variants for Parkinson's will be discussed, with a final consideration of the current state of the genetic architecture of the disorder. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Noopur Bhore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
| | - Erin C. Bogacki
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Benjamin O'Callaghan
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Helene Plun-Favreau
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Susanne Herbst
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
10
|
Mishima T, Yuasa-Kawada J, Fujioka S, Tsuboi Y. Perry Disease: Bench to Bedside Circulation and a Team Approach. Biomedicines 2024; 12:113. [PMID: 38255218 PMCID: PMC10813069 DOI: 10.3390/biomedicines12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
With technological applications, especially in genetic testing, new diseases have been discovered and new disease concepts have been proposed in recent years; however, the pathogenesis and treatment of these rare diseases are not as well established as those of common diseases. To demonstrate the importance of rare disease research, in this paper we focus on our research topic, Perry disease (Perry syndrome). Perry disease is a rare autosomal dominant neurodegenerative disorder clinically characterized by parkinsonism, depression/apathy, weight loss, and respiratory symptoms including central hypoventilation and central sleep apnea. The pathological classification of Perry disease falls under TAR DNA-binding protein 43 (TDP-43) proteinopathies. Patients with Perry disease exhibit DCTN1 mutations, which is the causative gene for the disease; they also show relatively uniform pathological and clinical features. This review summarizes recent findings regarding Perry disease from both basic and clinical perspectives. In addition, we describe technological innovations and outline future challenges and treatment prospects. We discuss the expansion of research from rare diseases to common diseases and the importance of collaboration between clinicians and researchers. Here, we highlight the importance of researching rare diseases as it contributes to a deeper understanding of more common diseases, thereby opening up new avenues for scientific exploration.
Collapse
Affiliation(s)
| | | | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan; (T.M.); (J.Y.-K.); (S.F.)
| |
Collapse
|
11
|
Bodin A, Greibill L, Gouju J, Letournel F, Pozzi S, Julien JP, Renaud L, Bohl D, Millecamps S, Verny C, Cassereau J, Lenaers G, Chevrollier A, Tassin AM, Codron P. Transactive response DNA-binding protein 43 is enriched at the centrosome in human cells. Brain 2023; 146:3624-3633. [PMID: 37410912 PMCID: PMC10473568 DOI: 10.1093/brain/awad228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.
Collapse
Affiliation(s)
- Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Logan Greibill
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Julien Gouju
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Franck Letournel
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Laurence Renaud
- Département de Neurosciences, Université de Montréal, Montréal, Qc H3C 3J7, Canada
- Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Julien Cassereau
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| |
Collapse
|
12
|
Christoforidou E, Simoes FA, Gordon D, Talbot K, Hafezparast M. Aberrant dynein function promotes TDP-43 aggregation and upregulation of p62 in male mice harboring transgenic human TDP-43. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-10. [PMID: 37498094 DOI: 10.1080/21678421.2023.2239276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Most TDP-43 mouse models of ALS do not display cytoplasmic mislocalisation or protein aggregation of TDP-43 in spinal motor neurons in vivo. Thus, we investigated whether a combination of defective dynein with a TDP-43 mutation could trigger TDP-43 pathology. METHODS Using immunohistochemical methods we examined the intracellular motor neuron pathology of the offspring of TDP-43WT and TDP-43M337V transgenic mice bred to heterozygous Loa mice, which carry an autosomal dominant mutation in dynein cytoplasmic 1 heavy chain 1 (Dync1h1). RESULTS These mice did not exhibit TDP-43 mislocalisation in spinal motor neurons, but the expression of mutant dynein in combination with wildtype human TDP-43 resulted in p62 upregulation and TDP-43 aggregation, thus partially recapitulating the human disease. CONCLUSIONS These findings provide new insights into the possible relationship between dynein and TDP-43 and could prove useful in future studies looking to elucidate the mechanism behind the TDP-43 pathology observed in ALS.
Collapse
Affiliation(s)
- Eleni Christoforidou
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK and
| | - Fabio A Simoes
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK and
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Majid Hafezparast
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK and
| |
Collapse
|
13
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
14
|
Dulski J, Koga S, Liberski PP, Sitek EJ, Butala AA, Sławek J, Dickson DW, Wszolek ZK. Perry Disease: Expanding the Genetic Basis. Mov Disord Clin Pract 2023; 10:1136-1142. [PMID: 37476320 PMCID: PMC10354621 DOI: 10.1002/mdc3.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 07/22/2023] Open
Abstract
Background Perry disease (or Perry syndrome [PS]) is a hereditary neurodegenerative disorder inevitably leading to death within few years from onset. All previous cases with pathological confirmation were caused by mutations within the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of the DCTN1 gene. Objectives This paper presents the first clinicopathological report of PS due to a novel DCTN1 mutation outside the CAP-Gly domain. Methods Clinical and pathological features of the new variant carrier are compared with another recently deceased PS case with a well-known pathogenic DCTN1 mutation and other reported cases. Results and Conclusions We report a novel DCTN1 mutation outside the CAP-Gly domain that we demonstrated to be pathogenic based on clinical and autopsy findings.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
- Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
| | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Paweł P. Liberski
- Department of Molecular Pathology and NeuropathologyMedical University of LodzŁódźPoland
- Faculty of Health Science, The Mazovian State University in PłockPłockPoland
| | - Emilia J. Sitek
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
- Laboratory of Clinical Neuropsychology, Neurolinguistics and Neuropsychotherapy, Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
| | - Ankur A. Butala
- Neurology, Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jarosław Sławek
- Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
| | | | | |
Collapse
|
15
|
Doke AA, Jha SK. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys Chem 2023; 295:106972. [PMID: 36812677 DOI: 10.1016/j.bpc.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
TDP-43 is a nucleic acid-binding protein that performs physiologically essential functions and is known to undergo phase separation and aggregation during stress. Initial observations have shown that TDP-43 forms heterogeneous assemblies, including monomer, dimer, oligomers, aggregates, phase-separated assemblies, etc. However, the significance of each assembly of TDP-43 concerning its function, phase separation, and aggregation is poorly known. Furthermore, how different assemblies of TDP-43 are related to each other is unclear. In this review, we focus on the various assemblies of TDP-43 and discuss the plausible origin of the structural heterogeneity of TDP-43. TDP-43 is involved in multiple physiological processes like phase separation, aggregation, prion-like seeding, and performing physiological functions. However, the molecular mechanism behind the physiological process performed by TDP-43 is not well understood. The current review discusses the plausible molecular mechanism of phase separation, aggregation, and prion-like propagation of TDP-43.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Gharbi T, Liu C, Khan H, Zhang Z, Yang GY, Tang Y. Hypoxic Preconditioned Neural Stem Cell-Derived Extracellular Vesicles Contain Distinct Protein Cargo from Their Normal Counterparts. Curr Issues Mol Biol 2023; 45:1982-1997. [PMID: 36975497 PMCID: PMC10047917 DOI: 10.3390/cimb45030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Hypoxic preconditioning has been demonstrated to increase the resistance of neural stem cells (NSCs) to hypoxic conditions, as well as to improve their capacity for differentiation and neurogenesis. Extracellular vesicles (EVs) have recently emerged as critical mediators of cell–cell communication, but their role in this hypoxic conditioning is presently unknown. Here, we demonstrated that three hours of hypoxic preconditioning triggers significant neural stem cell EV release. Proteomic profiling of EVs from normal and hypoxic preconditioned neural stem cells identified 20 proteins that were upregulated and 22 proteins that were downregulated after hypoxic preconditioning. We also found an upregulation of some of these proteins by qPCR, thus indicating differences also at the transcript level within the EVs. Among the upregulated proteins are CNP, Cyfip1, CASK, and TUBB5, which are well known to exhibit significant beneficial effects on neural stem cells. Thus, our results not only show a significant difference of protein cargo in EVs consequent to hypoxic exposure, but identify several candidate proteins that might play a pivotal role in the cell-to-cell mediated communication underlying neuronal differentiation, protection, maturation, and survival following exposure to hypoxic conditions.
Collapse
|
17
|
Changes on proteomic and metabolomic profiling of cryopreserved sperm effected by melatonin. J Proteomics 2023; 273:104791. [PMID: 36538967 DOI: 10.1016/j.jprot.2022.104791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Cryopreservation may reduce sperm fertility due to cryodamage including physical-chemical and oxidative stress damages. As a powerful antioxidant, melatonin has been reported to improve cryoprotective effect of sperm. However, the molecular mechanism of melatonin on cryopreserved ram sperm hasn't been fully understand. Give this, this study aimed to investigate the postthaw motility parameters, antioxidative enzyme activities and lipid peroxidation, as well as proteomic, metabolomic changes of Huang-huai ram spermatozoa with freezing medium supplemented with melatonin. Melatonin was firstly replenished to the medium to yield five different final concentrations: 0.1, 0.5, 1.0, 1.5, and 2.0 mM. A control (NC) group without melatonin replenishment was included. Protective effects of melatonin as evidenced by postthaw motility, activities of T-AOC, T-SOD, GSH-Px, CAT, contents of MDA, 4-HNE, as well as acrosome integrity, plasma membrane integrity, with 0.5 mM being the most effective concentration (MC group). Furthermore, 29 differentially abundant proteins involving in sperm functions were screened among Fresh, NC and MC groups of samples (n = 5) based on the 4D-LFQ, with 7 of them upregulated in Fresh and MC groups. 26 differentially abundant metabolites were obtained involving in sperm metabolism among the three groups of samples (n = 8) based on the UHPLC-QE-MS, with 18 of them upregulated in Fresh and MC groups. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the abundance changes of vital proteins and metabolites related to sperm function. Particularly, several proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine may be potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa. In conclusion, a dose-dependent replenishment of melatonin to freezing medium protected ram spermatozoa during cryopreservation, which can improve motility, antioxidant enzyme activities, reduce levels of lipid peroxidation products, modify the proteomic and metabolomic profiling of cryopreserved ram spermatozoa through reduction of oxidative stress, maintenance of OXPHOS and microtubule structure. SIGNIFICANCE: Melatonin, a powerful antioxidant protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner, with 0.5 mM being the most effective concentration. Furthermore, sequencing results based on the 4D-LFQ combined with the UHPLC-QE-MS indicated that melatonin modifies proteomic and metabolomic profiling of ram sperm during cryopreservation. According to the bioinformatic analysis, melatonin may have positive effects on frozen ram spermatozoa by regulating the expression changes of vital proteins and metabolites related to sperm metabolism and function. Particularly, several potential novel biomarkers for evaluating the postthaw quality of ram spermatozoa were acquired, proteins such as PRCP, NDUFB8, NDUFB9, SDHC, DCTN1, TUBB6, TUBA3E, SSNA1, as well as metabolites like L-histidine, L-targinine, ursolic acid, xanthine.
Collapse
|
18
|
Yang X, Ma Z, Lian P, Xu Y, Cao X. Common mechanisms underlying axonal transport deficits in neurodegenerative diseases: a mini review. Front Mol Neurosci 2023; 16:1172197. [PMID: 37168679 PMCID: PMC10164940 DOI: 10.3389/fnmol.2023.1172197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the accumulation of pathogenic proteins and abnormal localization of organelles. These pathological features may be related to axonal transport deficits in neurons, which lead to failures in pathological protein targeting to specific sites for degradation and organelle transportation to designated areas needed for normal physiological functioning. Axonal transport deficits are most likely early pathological events in such diseases and gradually lead to the loss of axonal integrity and other degenerative changes. In this review, we investigated reports of mechanisms underlying the development of axonal transport deficits in a variety of common neurodegenerative diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease to provide new ideas for therapeutic targets that may be used early in the disease process. The mechanisms can be summarized as follows: (1) motor protein changes including expression levels and post-translational modification alteration; (2) changes in microtubules including reducing stability and disrupting tracks; (3) changes in cargoes including diminished binding to motor proteins. Future studies should determine which axonal transport defects are disease-specific and whether they are suitable therapeutic targets in neurodegenerative diseases.
Collapse
|
19
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
20
|
Stoker TB, Dostal V, Cochius J, Williams-Gray CH, Scherzer CR, Wang J, Liu G, Coyle-Gilchrist I. DCTN1 mutation associated parkinsonism: case series of three new families with perry syndrome. J Neurol 2022; 269:6667-6672. [PMID: 35895135 DOI: 10.1007/s00415-022-11308-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas B Stoker
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK.
| | - Vaclav Dostal
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK
| | - Jeffrey Cochius
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clemens R Scherzer
- ADPA Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.,Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Junhao Wang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ganqiang Liu
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ian Coyle-Gilchrist
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK
| |
Collapse
|
21
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
22
|
Vishal SS, Wijegunawardana D, Salaikumaran MR, Gopal PP. Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons. Front Cell Dev Biol 2022; 10:876893. [PMID: 35646935 PMCID: PMC9133736 DOI: 10.3389/fcell.2022.876893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in TDP-43, a RNA-binding protein with multiple functions in RNA metabolism, cause amyotrophic lateral sclerosis (ALS), but it is uncertain how defects in RNA biology trigger motor neuron degeneration. TDP-43 is a major constituent of ribonucleoprotein (RNP) granules, phase separated biomolecular condensates that regulate RNA splicing, mRNA transport, and translation. ALS-associated TDP-43 mutations, most of which are found in the low complexity domain, promote aberrant liquid to solid phase transitions and impair the dynamic liquid-like properties and motility of RNP transport granules in neurons. Here, we perform a comparative analysis of ALS-linked mutations and TDP-43 variants in order to identify critical structural elements, aromatic and charged residues that are key determinants of TDP-43 RNP transport and condensate formation in neurons. We find that A315T and Q343R disease-linked mutations and substitutions of aromatic residues within the α-helical domain and LARKS, show the most severe defects in TDP-43 RNP granule transport and impair both anterograde and retrograde motility. F313L and F313-6L/Y substitutions of one or both phenylalanine residues in LARKS suggest the aromatic rings are important for TDP-43 RNP transport. Similarly, W334F/L substitutions of the tryptophan residue in the α-helical domain, impair TDP-43 RNP motility (W334L) or anterograde transport (W334F). We also show that R293A and R293K mutations, which disrupt the only RGG in the LCD, profoundly reduce long-range, directed transport and net velocity of TDP-43 RNP granules. In the disordered regions flanking the α-helical domain, we find that F283Y, F397Y or Y374F substitutions of conserved GF/G and SYS motifs, also impair anterograde and/or retrograde motility, possibly by altering hydrophobicity. Similarly, ALS-linked mutations in disordered regions distant from the α-helical domain also show anterograde transport deficits, consistent with previous findings, but these mutations are less severe than A315T and Q343R. Overall our findings demonstrate that the conserved α-helical domain, phenylalanine residues within LARKS and RGG motif are key determinants of TDP-43 RNP transport, suggesting they may mediate efficient recruitment of motors and adaptor proteins. These results offer a possible mechanism underlying ALS-linked TDP-43 defects in axonal transport and homeostasis.
Collapse
Affiliation(s)
- Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | | | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
23
|
Liao YZ, Ma J, Dou JZ. The Role of TDP-43 in Neurodegenerative Disease. Mol Neurobiol 2022; 59:4223-4241. [DOI: 10.1007/s12035-022-02847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
|
24
|
Saveri P, Magri S, Maderna E, Balistreri F, Lombardi R, Ciano C, Moda F, Garavaglia B, Reale C, Lauria Pinter G, Taroni F, Pareyson D, Pisciotta C. DNAJB2-related CMT2: Pathomechanism insights and phenotypic spectrum widening. Eur J Neurol 2022; 29:2056-2065. [PMID: 35286755 PMCID: PMC9314055 DOI: 10.1111/ene.15326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Background and purpose Mutations in DNAJB2 are associated with autosomal recessive hereditary motor neuropathies/ Charcot‐Marie‐Tooth disease type 2 (CMT2). We describe an Italian family with CMT2 due to a homozygous DNAJB2 mutation and provide insight into the pathomechanisms. Methods Patients with DNAJB2 mutations were characterized clinically, electrophysiologically and by means of skin biopsy. mRNA and protein levels were studied in lymphoblastoid cells (LCLs) from patients and controls. Results Three affected siblings were found to carry a homozygous DNAJB2 null mutation segregating with the disease. The disease manifested in the second to third decade of life. Clinical examination showed severe weakness of the thigh muscles and complete loss of movement in the foot and leg muscles. Sensation was reduced in the lower limbs. All patients had severe hearing loss and the proband also had Parkinson’s disease (PD). Nerve conduction studies showed an axonal motor and sensory length‐dependent polyneuropathy. DNAJB2 expression studies revealed reduced mRNA levels and the absence of the protein in the homozygous subject in both LCLs and skin biopsy. Interestingly, we detected phospho‐alpha‐synuclein deposits in the proband, as already seen in PD patients, and demonstrated TDP‐43 accumulation in patients’ skin. Conclusions Our results broaden the clinical spectrum of DNAJB2‐related neuropathies and provide evidence that DNAJB2 mutations should be taken into account as another causative gene of CMT2 with hearing loss and parkinsonism. The mutation likely acts through a loss‐of‐function mechanism, leading to toxic protein aggregation such as TDP‐43. The associated parkinsonism resembles the classic PD form with the addition of abnormal accumulation of phospho‐alpha‐synuclein.
Collapse
Affiliation(s)
- Paola Saveri
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Maderna
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Balistreri
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Lombardi
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciano
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Reale
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Lauria Pinter
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Franco Taroni
- Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Thompson JW, Michel MFV, Phillips BT. Centrosomal Enrichment and Proteasomal Degradation of SYS-1/β-catenin Requires the Microtubule Motor Dynein. Mol Biol Cell 2022; 33:ar42. [PMID: 35196020 PMCID: PMC9282011 DOI: 10.1091/mbc.e22-02-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Caenorhabditis elegans Wnt/β-catenin asymmetry (WβA) pathway utilizes asymmetric regulation of SYS-1/β-catenin and POP-1/TCF coactivators. WβA differentially regulates gene expression during cell fate decisions, specifically by asymmetric localization of determinants in mother cells to produce daughters biased toward their appropriate cell fate. Despite the induction of asymmetry, β-catenin localizes symmetrically to mitotic centrosomes in both mammals and C. elegans. Owing to the mitosis-specific localization of SYS-1 to centrosomes and enrichment of SYS-1 at kinetochore microtubules when SYS-1 centrosomal loading is disrupted, we investigated active trafficking in SYS-1 centrosomal localization. Here, we demonstrate that trafficking by microtubule motor dynein is required to maintain SYS-1 centrosomal enrichment, by dynein RNA interference (RNAi)-mediated decreases in SYS-1 centrosomal enrichment and by temperature-sensitive allele of the dynein heavy chain. Conversely, we observe depletion of microtubules by nocodazole treatment or RNAi of dynein-proteasome adapter ECPS-1 exhibits increased centrosomal enrichment of SYS-1. Moreover, disruptions to SYS-1 or negative regulator microtubule trafficking are sufficient to significantly exacerbate SYS-1 dependent cell fate misspecifications. We propose a model whereby retrograde microtubule-mediated trafficking enables SYS-1 enrichment at centrosomes, enhancing its eventual proteasomal degradation. These studies support the link between centrosomal localization and enhancement of proteasomal degradation, particularly for proteins not generally considered “centrosomal.”
Collapse
Affiliation(s)
| | - Maria F Valdes Michel
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242-1324
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242-1324
| |
Collapse
|
26
|
Tau and TDP-43 synergy: a novel therapeutic target for sporadic late-onset Alzheimer's disease. GeroScience 2021; 43:1627-1634. [PMID: 34185246 PMCID: PMC8492812 DOI: 10.1007/s11357-021-00407-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is traditionally defined by the presence of two types of protein aggregates in the brain: amyloid plaques comprised of the protein amyloid-β (Aβ) and neurofibrillary tangles containing the protein tau. However, a large proportion (up to 57%) of AD patients also have TDP-43 aggregates present as an additional comorbid pathology. The presence of TDP-43 aggregates in AD correlates with hippocampal sclerosis, worse brain atrophy, more severe cognitive impairment, and more rapid cognitive decline. In patients with mixed Aβ, tau, and TDP-43 pathology, TDP-43 may interact with neurodegenerative processes in AD, worsening outcomes. While considerable progress has been made to characterize TDP-43 pathology in AD and late-onset dementia, there remains a critical need for mechanistic studies to understand underlying disease biology and develop therapeutic interventions. This perspectives article reviews the current understanding of these processes from autopsy cohort studies and model organism-based research, and proposes targeting neurotoxic synergies between tau and TDP-43 as a new therapeutic strategy for AD with comorbid TDP-43 pathology.
Collapse
|