1
|
Wang X, Zhan W, Zhou S, He S, Wang S, Yu Y, Fan H. The synthesis of triacylglycerol by diacylglycerol acyltransferases (CsDGAT1A and CsDGAT2D) is essential for tolerance of cucumber's resistance to low-temperature stress. PLANT CELL REPORTS 2024; 43:196. [PMID: 39009888 DOI: 10.1007/s00299-024-03282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
KEY MESSAGE CsDGAT1A and CsDGAT2D play a positive regulatory role in cucumber's response to low-temperature stress and positively regulate the synthesis of triacylglycerol (TAG). Triacylglycerol (TAG), a highly abundant and significant organic compound in plants, plays crucial roles in plant growth, development, and stress responses. The final acetylation step of TAG synthesis is catalyzed by diacylglycerol acyltransferases (DGATs). However, the involvement of DGATs in cucumber's low-temperature stress response remains unexplored. This study focused on two DGAT genes, CsDGAT1A and CsDGAT2D, investigating their function in enhancing cucumber's low-temperature stress tolerance. Our results revealed that both proteins were the members of the diacylglycerol acyltransferase family and were predominantly localized in the endoplasmic reticulum. Functional analysis demonstrated that transient silencing of CsDGAT1A and CsDGAT2D significantly compromised cucumber's low-temperature stress tolerance, whereas transient overexpression enhanced it. Furthermore, the TAG content quantification indicated that CsDGAT1A and CsDGAT2D promoted TAG accumulation. In conclusion, this study elucidates the lipid metabolism mechanism in cucumber's low-temperature stress response and offers valuable insights for the cultivation of cold-tolerant cucumber plants.
Collapse
Affiliation(s)
- Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Zhan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siyao He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siqi Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Wang HY, Li PF, Wang Y, Chi CY, Jin XX, Ding GH. Overexpression of cucumber CYP82D47 enhances resistance to powdery mildew and Fusarium oxysporum f. sp. cucumerinum. Funct Integr Genomics 2024; 24:14. [PMID: 38236308 DOI: 10.1007/s10142-024-01287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
Cytochrome P450s are a large family of protein-encoding genes in plant genomes, many of which have not yet been comprehensively characterized. Here, a novel P450 gene, CYP82D47, was isolated and functionally characterized from cucumber (Cucumis sativus L.). Quantitative real-time reverse-transcription polymerase chain reaction analysis revealed that CYP82D47 expression was triggered by salicylic acid (SA) and ethephon (ETH). Expression analysis revealed a correlation between CYP82D47 transcript levels and plant defense responses against powdery mildew (PM) and Fusarium oxysporum f. sp. cucumerinum (Foc). Although no significant differences were observed in disease resistance between CYP82D47-RNAi and wild-type cucumber, overexpression (OE) of CYP82D47 enhanced PM and Foc resistance in cucumber. Furthermore, the expression levels of SA-related genes (PR1, PR2, PR4, and PR5) increased in CYP82D47-overexpressing plants 7 days post fungal inoculation. The levels of ETH-related genes (EIN3 and EBF2) were similarly upregulated. The observed enhanced resistance was associated with the upregulation of SA/ETH-signaling-dependent defense genes. These findings indicate the crucial role of CYP82D47 in pathogen defense in cucumber. CYP82D47-overexpressing cucumber plants exhibited heightened susceptibility to both diseases. The study results offer important insights that could aid in the development of disease-resistant cucumber cultivars and elucidate the molecular mechanisms associated with the functions of CYP82D47.
Collapse
Affiliation(s)
| | - Peng-Fei Li
- Harbin Normal University, Harbin, 150025, China
| | - Yu Wang
- Harbin Normal University, Harbin, 150025, China
| | - Chun-Yu Chi
- Harbin Normal University, Harbin, 150025, China
| | - Xiao-Xia Jin
- Harbin Normal University, Harbin, 150025, China.
| | - Guo-Hua Ding
- Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
3
|
Yu Y, He J, Liu L, Zhao H, Zhang M, Hong J, Meng X, Fan H. Characterization of caffeoyl shikimate esterase gene family identifies CsCSE5 as a positive regulator of Podosphaera xanthii and Corynespora cassiicola pathogen resistance in cucumber. PLANT CELL REPORTS 2023; 42:1937-1950. [PMID: 37823975 DOI: 10.1007/s00299-023-03074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
KEY MESSAGE CsCSE genes might be involved in the tolerance of cucumber to pathogens. Silencing of the CsCSE5 gene resulted in attenuated resistance of cucumber to Podosphaera xanthii and Corynespora cassiicola. Caffeoyl shikimate esterase (CSE), a key enzyme in the lignin biosynthetic pathway, has recently been characterized to play a key role in defense against pathogenic infection in plants. However, a systematic analysis of the CSE gene family in cucumber (Cucumis sativus) has not yet been conducted. Here, we identified eight CsCSE genes from the cucumber genome via bioinformatic analyses, and these genes were unevenly distributed on chromosomes 1, 3, 4, and 5. Results from multiple sequence alignment indicated that the CsCSE proteins had domains required for CSE activity. Phylogenetic analysis of gene structure and protein motifs revealed the conservation and diversity of the CsCSE gene family. Collinearity analysis showed that CsCSE genes had high homology with CSE genes in wax gourd (Benincasa hispida). Cis-acting element analysis of the promoters suggested that CsCSE genes might play important roles in growth, development, and stress tolerance. Expression pattern analysis indicated that CsCSE5 might be involved in regulating the resistance of cucumber to pathogens. Functional verification data confirmed that CsCSE5 positively regulates the resistance of cucumber to powdery mildew pathogen Podosphaera xanthii and target leaf spot pathogen Corynespora cassiicola. The results of our study provide information that will aid the genetic improvement of resistant cucumber varieties.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jiajing He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Linghao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Mengmeng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jinghang Hong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
4
|
Chen Y, Gao D, Wu Y, Wang L, Fan W, Gao Y, Wang W, Su L, Li B, Mu W, Yu W. Determination of the Dissipation Dynamics and Terminal Residue of Bupirimate and Its Metabolites in Cucumber by QuEChERS-Based UPLC-MS/MS. ACS OMEGA 2023; 8:23975-23981. [PMID: 37426269 PMCID: PMC10323959 DOI: 10.1021/acsomega.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Bupirimate is widely used as a highly active systemic fungicide. However, the frequent and heavy use of bupirimate has led to pesticide residues in crops that threaten human health and food safety. At present, there is limited research on the detection of ethirimol, which is the metabolite of bupirimate. This study established an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to simultaneously detect bupirimate and ethirimol residues based on QuEChERS pretreatment. The average recoveries of bupirimate and ethirimol in cucumber were between 95.2 and 98.7%, respectively, with relative standard deviations (RSDs) of 0.92-5.54% at fortified levels of 0.01, 0.1, and 5 mg L-1. The established method was used to determine the residues in field trials in 12 regions of China, and the final residues of bupirimate were all less than the maximum residue limit (MRL). Since the risk quotient (RQ) of bupirimate and ethirimol in cucumber was less than 1.3%, the dietary risk assessment indicated that bupirimate and ethirimol had a low long-term dietary risk to the general population in China. This study provides effective guidance on the proper use of bupirimate in cucumber fields and a reference for establishing the MRL of bupirimate in China.
Collapse
Affiliation(s)
- Yue Chen
- Shandong
Academy of Pesticide Sciences, Jinan, Shandong 250033, China
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
| | - Deliang Gao
- Shandong
Academy of Pesticide Sciences, Jinan, Shandong 250033, China
| | - Yueming Wu
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
| | - Ling Wang
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Weidi Fan
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yun Gao
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Wenli Wang
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Li Su
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Beixing Li
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Wei Mu
- College
of Plant Protection, Shandong Agricultural
University, Tai’an, Shandong 271018, China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Weili Yu
- Shandong
Academy of Pesticide Sciences, Jinan, Shandong 250033, China
| |
Collapse
|
5
|
Huang J, Zhao J, Wang X, Ma L, Ma Z, Meng X, Fan H. SnRK1 signaling regulates cucumber growth and resistance to Corynespora cassiicola. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111716. [PMID: 37086974 DOI: 10.1016/j.plantsci.2023.111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Energy metabolism is one of the key factors determining the growth and development of plants and the response to biotic and abiotic stresses. Sucrose non-fermentation 1 related protein kinase 1 (SnRK1) is an important energy-sensitive regulator that plays a key role in the overall control of carbohydrate metabolism. However, little is known about the function of SnRK1 in cucumber. In this study, metformin (an SnRK1 activator) and trehalose (an SnRK1 inhibitor) were used to investigate the role of SnRK1 signaling in cucumber. The results showed that SnRK1 activation could inhibit the growth of cucumber, slow down the net photosynthetic rate (Pn), reduce the contents of photosynthetic pigments and soluble sugars, and suppress the expression of genes related to sucrose metabolism. By contrast, SnRK1 inhibition yielded opposite results. Furthermore, SnRK1 activation and CsSnRK1 over-expression improved cucumber resistance to Corynespora cassiicola. While, SnRK1 inhibition and CsSnRK1 silencing reduced the resistance of cucumber to C. cassiicola. The results indicated that CsSnRK1 gene can positively regulate the resistance of cucumber to C. cassiicola. We conclude that CsSnRK1 signaling plays an important role in balancing the growth and immune response of cucumber. These results can be applied to the improvement of disease-resistant cucumber varieties.
Collapse
Affiliation(s)
- Jingnan Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Juyong Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
6
|
Zhang B, Feng H, Ge W, Wang X, Zhang J, Ji R. BrUFO positively regulates the infection of Chinese cabbage by Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2023; 14:1128515. [PMID: 36968418 PMCID: PMC10034201 DOI: 10.3389/fpls.2023.1128515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Chinese cabbage is one of the most important vegetable crops in China. However, the clubroot disease caused by the infection of Plasmodiophora brassicae (P. brassicae) has seriously affected the yield and quality of Chinese cabbage. In our previous study, BrUFO gene was found to be significantly up-regulated in diseased roots of Chinese cabbage after inoculation with P. brassicae. UFO (UNUSUAL FLORAL ORGANS) have the properties of substrate recognition during ubiquitin-mediated proteolysis. A variety of plant can activate immunity response through the ubiquitination pathway. Therefore, it is very important to study the function of UFO in response to P. brassicae. METHODS In this study, The expression pattern of BrUFO Gene was measured by qRT-PCR and In situ Hybridization (ISH). The expression location of BrUFO in cells was determined by subcellular localization. The function of BrUFO was verified by Virus-induced Gene Silencing (VIGS). proteins interacting with BrUFO protein were screened by yeast two-hybrid. RESULTS Quantitative real-time polymerase chain reactions (qRT-PCR) and in situ hybridization analysis showed that expression of BrUFO gene in the resistant plants was lower than that in susceptible plants. Subcellular localization analysis showed that BrUFO gene was expressed in the nucleus. Virus-induced gene silencing (VIGS) analysis showed that silencing of BrUFO gene reduced the incidence of clubroot disease. Six proteins interacting with BrUFO protein were screened by Y2H assay. Two of them (Bra038955, a B-cell receptor-associated 31-like protein and Bra021273, a GDSL-motif esterase/acyltransferase/lipase Enzyme) were confirmed to strongly interact with BrUFO protein. DISCUSSION BrUFO gene should be a key gene of chinese cabbage against the infection of P. brassicae. BrUFO gene silencing improves the resistance of plants to clubroot disease. BrUFO protein may interact with CUS2 to induce ubiquitination in PRR-mediated PTI reaction through GDSL lipases, so as to achieve the effect of Chinese cabbage against the infection of P. brassicae.
Collapse
|
7
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
8
|
Yu Y, Yu Y, Cui N, Ma L, Tao R, Ma Z, Meng X, Fan H. Lignin biosynthesis regulated by CsCSE1 is required for Cucumis sativus defence to Podosphaera xanthii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:88-98. [PMID: 35830761 DOI: 10.1016/j.plaphy.2022.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Lignin is a complex phenolic compound that can enhance the stiffness, hydrophobicity, and antioxidant capacity of the cell wall; it thus provides a critical barrier against pathogen and insect invaders. Caffeoyl shikimate esterase (CSE) is a key novel enzyme involved in lignin biosynthesis that is associated with genetic improvements in lignocellulosic biomass; however, no research thus far have revealed the role of CSE in resistance to pathogenic stress. CsCSE1 (Cucsa.134370) has previously been shown to highly associated with the response of cucumber to attack by Podosphaera xanthii through RNA sequencing. Here, we detected the exactly role of CsCSE1 in the defence of cucumber to P. xanthii infection. Homologous sequence alignment revealed that CsCSE1 contains two highly conserved lyase domains (GXSXG), suggesting that CsCSE1 possesses CSE activity. Subcellular localization analysis manifested that CsCSE1 was localized to the plasma membrane and endoplasmic reticulum (ER). Functional analysis demonstrated that the transient silencing of CsCSE1 in cucumber dramatically attenuated resistance to P. xanthii, whereas overexpression of CsCSE1 in cucumber markedly increased resistance to P. xanthii. Further investigation of the abundance of lignin in transient transgenic plants revealed that CsCSE1 might actively mediate the disease resistance of cucumber by promoting lignin biosynthesis. CsCSE1 also affects the expression of its downstream lignin biosynthesis-related genes, like CsLAC, CsCOMT, CsCCR, and CsCAD. The results of this study provide targets for the genetic breeding of tolerant cucumber cultivars as well as new insights that could aid the control of plant diseases.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Tao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
9
|
He Y, Wei M, Yan Y, Yu C, Cheng S, Sun Y, Zhu X, Wei L, Wang H, Miao L. Research Advances in Genetic Mechanisms of Major Cucumber Diseases Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:862486. [PMID: 35665153 PMCID: PMC9161162 DOI: 10.3389/fpls.2022.862486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important economic vegetable crop worldwide that is susceptible to various common pathogens, including powdery mildew (PM), downy mildew (DM), and Fusarium wilt (FM). In cucumber breeding programs, identifying disease resistance and related molecular markers is generally a top priority. PM, DM, and FW are the major diseases of cucumber in China that cause severe yield losses and the genetic-based cucumber resistance against these diseases has been developed over the last decade. Still, the molecular mechanisms of cucumber disease resistance remain unclear. In this review, we summarize recent findings on the inheritance, molecular markers, and quantitative trait locus mapping of cucumber PM, DM, and FM resistance. In addition, several candidate genes, such as PM, DM, and FM resistance genes, with or without functional verification are reviewed. The data help to reveal the molecular mechanisms of cucumber disease resistance and provide exciting new opportunities for further resistance breeding.
Collapse
Affiliation(s)
- Yujin He
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Mingming Wei
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Yanyan Yan
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Yu
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Siqi Cheng
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yihan Sun
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang Agriculture and Forestry University, Zhuji, China
| | - Lingling Wei
- Institute of Ecological Civilization, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Li Miao
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
10
|
Meng X, Yu Y, Song T, Yu Y, Cui N, Ma Z, Chen L, Fan H. Transcriptome Sequence Analysis of the Defense Responses of Resistant and Susceptible Cucumber Strains to Podosphaera xanthii. FRONTIERS IN PLANT SCIENCE 2022; 13:872218. [PMID: 35645993 PMCID: PMC9134894 DOI: 10.3389/fpls.2022.872218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew (PM) caused by Podosphaera xanthii poses a continuous threat to the performance and yield of the cucumber (Cucumis sativus L.). Control in the initial stages of infection is particularly important. Here, we studied the differential physiological and transcriptomic changes between PM-resistant strain B21-a-2-1-2 and PM-susceptible strain B21-a-2-2-2 at the early stage of P. xanthii attack. When challenged with P. xanthii, the tolerant line can postpone the formation of the pathogen primary germ. Comparative transcriptomic analysis suggested that DEGs related to the cell wall and to pathogen and hormone responses were similar enriched in both cucumber lines under P. xanthii infection. Notably, the number of DEGs triggered by P. xanthii in B21-a-2-1-2 was quintuple that in B21-a-2-2-2, revealing that the success of defense of resistant cucumber is due to rapidly mobilizing multiple responses. The unique responses detected were genes related to SA signaling, MAPK signaling, and Dof and WRKY transcription factors. Furthermore, 5 P. xanthii -inducible hub genes were identified, including GLPK, ILK1, EIN2, BCDHβ1, and RGGA, which are considered to be key candidate genes for disease control. This study combined multiple analytical approaches to capture potential molecular players and will provide key resources for developing cucumber cultivars resistant to pathogen stress.
Collapse
Affiliation(s)
- Xiangnan Meng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Tiefeng Song
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Zhang W, Yuan Q, Wu Y, Zhang J, Nie J. Genome-Wide Identification and Characterization of the CC-NBS-LRR Gene Family in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23095048. [PMID: 35563438 PMCID: PMC9099878 DOI: 10.3390/ijms23095048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The NBS-LRR (NLR) gene family plays a pivotal role in regulating disease defense response in plants. Cucumber is one of the most important vegetable crops in the world, and various plant diseases, including powdery mildew (PM), cause severe losses in both cucumber productivity and quality annually. To characterize and understand the role of the CC-NBS-LRR(CNL) family of genes in disease defense response in cucumber plants, we performed bioinformatical analysis to characterize these genes systematically. We identified 33 members of the CNL gene family in cucumber plants, and they are distributed on each chromosome with chromosome 4 harboring the largest cluster of five different genes. The corresponding CNL family member varies in the number of amino acids and exons, molecular weight, theoretical isoelectric point (pI) and subcellular localization. Cis-acting element analysis of the CNL genes reveals the presence of multiple phytohormone, abiotic and biotic responsive elements in their promoters, suggesting that these genes might be responsive to plant hormones and stress. Phylogenetic and synteny analysis indicated that the CNL proteins are conserved evolutionarily in different plant species, and they can be divided into four subfamilies based on their conserved domains. MEME analysis and multiple sequence alignment showed that conserved motifs exist in the sequence of CNLs. Further DNA sequence analysis suggests that CsCNL genes might be subject to the regulation of different miRNAs upon PM infection. By mining available RNA-seq data followed by real-time quantitative PCR (qRT-PCR) analysis, we characterized expression patterns of the CNL genes, and found that those genes exhibit a temporospatial expression pattern, and their expression is also responsive to PM infection, ethylene, salicylic acid, and methyl jasmonate treatment in cucumber plants. Finally, the CNL genes targeted by miRNAs were predicted in cucumber plants. Our results in this study provided some basic information for further study of the functions of the CNL gene family in cucumber plants.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Qi Yuan
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Yiduo Wu
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jing Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jingtao Nie
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|
12
|
Xu X, Chen Y, Li B, Zhang Z, Qin G, Chen T, Tian S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. HORTICULTURE RESEARCH 2022; 9:uhac066. [PMID: 35591926 PMCID: PMC9113409 DOI: 10.1093/hr/uhac066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 05/21/2023]
Abstract
The horticultural industry helps to enrich and improve the human diet while contributing to growth of the agricultural economy. However, fungal diseases of horticultural crops frequently occur during pre- and postharvest periods, reducing yields and crop quality and causing huge economic losses and wasted food. Outcomes of fungal diseases depend on both horticultural plant defense responses and fungal pathogenicity. Plant defense responses are highly sophisticated and are generally divided into preformed and induced defense responses. Preformed defense responses include both physical barriers and phytochemicals, which are the first line of protection. Induced defense responses, which include innate immunity (pattern-triggered immunity and effector-triggered immunity), local defense responses, and systemic defense signaling, are triggered to counterstrike fungal pathogens. Therefore, to develop regulatory strategies for horticultural plant resistance, a comprehensive understanding of defense responses and their underlying mechanisms is critical. Recently, integrated multi-omics analyses, CRISPR-Cas9-based gene editing, high-throughput sequencing, and data mining have greatly contributed to identification and functional determination of novel phytochemicals, regulatory factors, and signaling molecules and their signaling pathways in plant resistance. In this review, research progress on defense responses of horticultural crops to fungal pathogens and novel regulatory strategies to regulate induction of plant resistance are summarized, and then the problems, challenges, and future research directions are examined.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|