1
|
Garzon Dasgupta AK, Martyanov AA, Ignatova AA, Zgoda VG, Novichkova GA, Panteleev MA, Sveshnikova AN. Comparison of platelet proteomic profiles between children and adults reveals origins of functional differences. Pediatr Res 2024; 95:966-973. [PMID: 37872237 DOI: 10.1038/s41390-023-02865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Platelets are blood cells responsible for the prevention of blood loss upon vessel wall disruption. It has been demonstrated that platelet functioning differs significantly between adult and pediatric donors. This study aimed to identify potential differences between the protein composition of platelets of pediatric, adolescent, and adult donors. METHODS Platelet functional testing was conducted with live cell flow cytometry. Using a straightforward approach to platelet washing based on the sequential platelets centrifugation-resuspension, we were able to obtain stable and robust proteomics results, which corresponded to previously published data. RESULTS We have identified that pediatric donors' platelets have increased amounts of proteins, responsible for mitochondrial activity, proteasome activity, and vesicle transport. Flow cytometry analysis of platelet intracellular signaling and functional responses revealed that platelets of the pediatric donors have diminished granule secretion and increased quiescent platelet calcium concentration and decreased calcium mobilization in response to ADP. We could explain the observed changes in calcium responses by the increased mitochondria protein content, and the changes in granule secretion could be explained by the differences in vesicle transport protein content. CONCLUSIONS Therefore, we can conclude that the age-dependence of platelet functional responses originates from the difference in platelet protein content. IMPACT Platelets of infants are known to functionally differ from the platelet of adult donors, although the longevity and persistivity of these differences are debatable. Pediatric donor platelets have enhanced amounts of mitochondrial, proteasomal, and vesicle transport proteins. Platelets of the pediatric donors had increased cytosolic calcium in the resting state, what is explained by the increased numbers of mitochondrial proteins. Infants had decreased platelet granule release, which resolved upon adolescence. Thus, platelets of the infants should be assessed differently from adult platelets. Differences in platelet proteomic contents persisted in adolescent groups, yet, no significant differences in platelet function were observed.
Collapse
Affiliation(s)
- Andrei K Garzon Dasgupta
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow, 109029, Russia
| | - Alexey A Martyanov
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow, 109029, Russia
- National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia
| | - Anastasia A Ignatova
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow, 109029, Russia
- National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia
| | - Galina A Novichkova
- National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow, 109029, Russia
- National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia
- Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow, 119991, Russia
| | - Anastasia N Sveshnikova
- Center for Theoretical Problems of Physico-Сhemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow, 109029, Russia.
- National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia.
- Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
Owen BM, Phie J, Huynh J, Needham S, Fraser C. Evaluation of quantitative biomarkers of aging in human PBMCs. FRONTIERS IN AGING 2023; 4:1260502. [PMID: 37780865 PMCID: PMC10540680 DOI: 10.3389/fragi.2023.1260502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Functional decline with age contributes significantly to the burden of disease in developed countries. There is growing interest in the development of therapeutic interventions which slow or even reverse aging. Time and cost constraints prohibit the testing of a large number of interventions for health and lifespan extension in model organisms. Cell-based models of aging could enable high throughput testing of potential interventions. Despite extensive reports in the literature of cell properties that correlate with donor age, few are robustly observed across different laboratories. This casts doubt on the extent that aging signatures are captured in cultured cells. We tested molecular changes previously reported to correlate with donor age in peripheral blood mononuclear cells (PBMCs) and evaluated their suitability for inclusion in a panel of functional aging measures. The tested measures spanned several pathways implicated in aging including epigenetic changes, apoptosis, proteostasis, and intracellular communication. Surprisingly, only two markers correlated with donor age. DNA methylation age accurately predicted donor age confirming this is a robust aging biomarker. Additionally, the apoptotic marker CD95 correlated with donor age but only within subsets of PBMCs. To demonstrate cellular rejuvenation in response to a treatment will require integration of multiple read-outs of cell function. However, building a panel of measures to detect aging in cells is challenging and further research is needed to identify robust predictors of age in humans.
Collapse
|
4
|
Gao A, Xu S, Li Q, Zhu C, Wang F, Wang Y, Hao S, Dong F, Cheng H, Cheng T, Gong Y. Interlukin-4 weakens resistance to stress injury and megakaryocytic differentiation of hematopoietic stem cells by inhibiting Psmd13 expression. Sci Rep 2023; 13:14253. [PMID: 37653079 PMCID: PMC10471741 DOI: 10.1038/s41598-023-41479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombocytopenia is a major and fatal complication in patients with acute myeloid leukemia (AML), which results from disrupted megakaryopoiesis by leukemic niche and blasts. Our previous research revealed that elevated interleukin-4 (IL-4) in AML bone marrow had adverse impact on multiple stages throughout megakaryopoiesis including hematopoietic stem cells (HSCs), but the specific mechanism remains unknown. In the present study, we performed single-cell transcriptome analysis and discovered activated oxidative stress pathway and apoptosis pathway in IL-4Rαhigh versus IL-4Rαlow HSCs. IL-4 stimulation in vitro led to apoptosis of HSCs and down-regulation of megakaryocyte-associated transcription factors. Functional assays displayed higher susceptibility of IL-4Rαhigh HSCs to tunicamycin and irradiation-induced apoptosis, demonstrating their vulnerability to endoplasmic reticulum (ER) stress injury. To clarify the downstream signaling of IL-4, we analyzed the transcriptomes of HSCs from AML bone marrow and found a remarkable down-regulation of the proteasome component Psmd13, whose expression was required for megakaryocytic-erythroid development but could be inhibited by IL-4 in vitro. We knocked down Psmd13 by shRNA in HSCs, and found their repopulating capacity and megakaryocytic differentiation were severely compromised, with increased apoptosis in vivo. In summary, our study uncovered a previous unrecognized regulatory role of IL-4-Psmd13 signaling in anti-stress and megakaryocytic differentiation capability of HSCs.
Collapse
Affiliation(s)
- Ai Gao
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuhui Xu
- Medical School, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Fengjiao Wang
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yajie Wang
- Medical School, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Tianjin, China
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yuemin Gong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
5
|
Solari FA, Krahn D, Swieringa F, Verhelst S, Rassaf T, Tasdogan A, Zahedi RP, Lorenz K, Renné T, Heemskerk JWM, Sickmann A. Multi-omics approaches to study platelet mechanisms. Curr Opin Chem Biol 2023; 73:102253. [PMID: 36689818 DOI: 10.1016/j.cbpa.2022.102253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 01/22/2023]
Abstract
Platelets are small anucleate cell fragments (2-4 μm in diameter) in the blood, which play an essential role in thrombosis and hemostasis. Genetic or acquired platelet dysfunctions are linked to bleeding, increased risk of thromboembolic events and cardiovascular diseases. Advanced proteomic approaches may pave the way to a better understanding of the roles of platelets in hemostasis, and pathophysiological processes such as inflammation, metastatic spread and thrombosis. Further insights into the molecular biology of platelets are crucial to aid drug development and identify diagnostic markers of platelet activation. Platelet activation is known to be an extremely rapid process and involves multiple post-translational mechanisms at sub second time scale, including proteolysis and phosphorylation. Multi-omics technologies and biochemical approaches can be exploited to precisely probe and define these posttranslational pathways. Notably, the absence of a nucleus in platelets significantly reduces the number of present proteins, simplifying mass spectrometry-based proteomics and metabolomics approaches.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Daniel Krahn
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, 6217 KD, Maastricht, the Netherlands
| | - Steven Verhelst
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - Tienush Rassaf
- Clinic for Cardiology and Angiology, University Hospital Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Rene P Zahedi
- Department of Internal Medicine, University of Manitoba, Canada
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Renné
- Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44143, Dortmund, Germany; Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
6
|
Dissecting Platelet's Role in Viral Infection: A Double-Edged Effector of the Immune System. Int J Mol Sci 2023; 24:ijms24032009. [PMID: 36768333 PMCID: PMC9916939 DOI: 10.3390/ijms24032009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Platelets play a major role in the processes of primary hemostasis and pathological inflammation-induced thrombosis. In the mid-2000s, several studies expanded the role of these particular cells, placing them in the "immune continuum" and thus changing the understanding of their function in both innate and adaptive immune responses. Among the many receptors they express on their surface, platelets express Toll-Like Receptors (TLRs), key receptors in the inflammatory cell-cell reaction and in the interaction between innate and adaptive immunity. In response to an infectious stimulus, platelets will become differentially activated. Platelet activation is variable depending on whether platelets are activated by a hemostatic or pathogen stimulus. This review highlights the role that platelets play in platelet modulation count and adaptative immune response during viral infection.
Collapse
|
7
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Reddy DH, Singh SK. Redefining oxidative stress in Alzheimer's disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci 2022; 306:120855. [DOI: 10.1016/j.lfs.2022.120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
|
8
|
Zaid Y, Merhi Y. Implication of Platelets in Immuno-Thrombosis and Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:863846. [PMID: 35402556 PMCID: PMC8990903 DOI: 10.3389/fcvm.2022.863846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
In addition to their well-described hemostatic function, platelets are active participants in innate and adaptive immunity. Inflammation and immunity are closely related to changes in platelet reactions and enhanced platelet function in thrombo-inflammation, as well as in microbial and virus infections. A platelet’s immune function is incompletely understood, but an important balance exists between its protective and pathogenic responses and its thrombotic and inflammatory functions. As the mediator of vascular homeostasis, platelets interact with neutrophils, bacteria and virus by expressing specific receptors and releasing granules, transferring RNA, and secreting mitochondria, which controls hemostasis and thrombosis, infection, and innate and adaptive immunity. This review focuses on the involvement of platelets during immuno-thrombosis and thrombo-inflammation.
Collapse
Affiliation(s)
- Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, The Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
9
|
El-Kadiry AEH, Rafei M, Shammaa R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med (Lausanne) 2021; 8:756029. [PMID: 34881261 PMCID: PMC8645794 DOI: 10.3389/fmed.2021.756029] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy practices date back to the 19th century and continue to expand on investigational and investment grounds. Cell therapy includes stem cell- and non-stem cell-based, unicellular and multicellular therapies, with different immunophenotypic profiles, isolation techniques, mechanisms of action, and regulatory levels. Following the steps of their predecessor cell therapies that have become established or commercialized, investigational and premarket approval-exempt cell therapies continue to provide patients with promising therapeutic benefits in different disease areas. In this review article, we delineate the vast types of cell therapy, including stem cell-based and non-stem cell-based cell therapies, and create the first-in-literature compilation of the different "multicellular" therapies used in clinical settings. Besides providing the nuts and bolts of FDA policies regulating their use, we discuss the benefits of cell therapies reported in 3 therapeutic areas-regenerative medicine, immune diseases, and cancer. Finally, we contemplate the recent attention shift toward combined therapy approaches, highlighting the factors that render multicellular therapies a more attractive option than their unicellular counterparts.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Simurda T, Asselta R, Zolkova J, Brunclikova M, Dobrotova M, Kolkova Z, Loderer D, Skornova I, Hudecek J, Lasabova Z, Stasko J, Kubisz P. Congenital Afibrinogenemia and Hypofibrinogenemia: Laboratory and Genetic Testing in Rare Bleeding Disorders with Life-Threatening Clinical Manifestations and Challenging Management. Diagnostics (Basel) 2021; 11:2140. [PMID: 34829490 PMCID: PMC8622093 DOI: 10.3390/diagnostics11112140] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Congenital fibrinogen disorders are rare pathologies of the hemostasis, comprising quantitative (afibrinogenemia, hypofibrinogenemia) and qualitative (dysfibrinogenemia and hypodysfibrinogenemia) disorders. The clinical phenotype is highly heterogeneous, being associated with bleeding, thrombosis, or absence of symptoms. Afibrinogenemia and hypofibrinogenemia are the consequence of mutations in the homozygous, heterozygous, or compound heterozygous state in one of three genes encoding the fibrinogen chains, which can affect the synthesis, assembly, intracellular processing, stability, or secretion of fibrinogen. In addition to standard coagulation tests depending on the formation of fibrin, diagnostics also includes global coagulation assays, which are effective in monitoring the management of replacement therapy. Genetic testing is a key point for confirming the clinical diagnosis. The identification of the precise genetic mutations of congenital fibrinogen disorders is of value to permit early testing of other at risk persons and better understand the correlation between clinical phenotype and genotype. Management of patients with afibrinogenemia is particularly challenging since there are no data from evidence-based medicine studies. Fibrinogen concentrate is used to treat bleeding, whereas for the treatment of thrombotic complications, administered low-molecular-weight heparin is most often. This review deals with updated information about afibrinogenemia and hypofibrinogenemia, contributing to the early diagnosis and effective treatment of these disorders.
Collapse
Affiliation(s)
- Tomas Simurda
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Humanitas Clinical and Research Center IRCCS, 20089 Rozzano, Italy
| | - Jana Zolkova
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| | - Monika Brunclikova
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| | - Miroslava Dobrotova
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| | - Zuzana Kolkova
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, 03601 Martin, Slovakia; (Z.K.); (D.L.)
| | - Dusan Loderer
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, 03601 Martin, Slovakia; (Z.K.); (D.L.)
| | - Ingrid Skornova
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| | - Jan Hudecek
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, 03601 Martin, Slovakia;
| | - Jan Stasko
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| | - Peter Kubisz
- National Center of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital in Martin, 03601 Martin, Slovakia; (J.Z.); (M.B.); (M.D.); (I.S.); (J.H.); (J.S.); (P.K.)
| |
Collapse
|
11
|
The Proteasome Inhibitor Bortezomib Induces Apoptosis and Activation in Gel-Filtered Human Platelets. Int J Mol Sci 2021; 22:ijms22168955. [PMID: 34445660 PMCID: PMC8396574 DOI: 10.3390/ijms22168955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Bortezomib (BTZ) has demonstrated its efficacy in several hematological disorders and has been associated with thrombocytopenia. There is controversy about the effect of BTZ on human platelets, so we set out to determine its effect on various types of platelet samples. Human platelets were investigated in platelet-rich plasma (PRP) and as gel-filtered platelets (GFPs). Mitochondrial inner membrane potential depolarization and phosphatidylserine (PS) and P-selectin expression levels were studied by flow cytometry, while thrombin generation was measured by a fluorescent method. In PRP, BTZ caused negligible PS expression after 60 min of treatment. However, in GFPs, PS expression was dose- and time-dependently increased in the BTZ-treated groups, as was P-selectin. The percentage of depolarized cells was also higher after BTZ pretreatment at both time points. Peak thrombin and velocity index increased significantly even with the lowest BTZ concentration (p = 0.0019; p = 0.0032) whereas time to peak and start tail parameters decreased (p = 0.0007; p = 0.0034). The difference between PRP and GFP results can be attributed to the presence of plasma proteins in PRP, as the PS-stimulating effect of BTZ could be attenuated by supplementing GFPs with purified human albumin. Overall, BTZ induces a procoagulant platelet phenotype in an experimental setting devoid of plasma proteins.
Collapse
|