1
|
Ashraf A, Guo Y, Yang T, Ud Din AS, Ahmad K, Li W, Hou H. Microalgae-Derived Peptides: Exploring Bioactivities and Functional Food Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1000-1013. [PMID: 39757903 DOI: 10.1021/acs.jafc.4c06800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
A variety of bioactive peptides with unique and diverse structures could be found in microalgae with various bioactivities including antioxidant, antihypertensive, and antibacterial bioactivities. Food products containing microalgae peptides hold significant health and nutrition potential. Peptide liberation through enzymatic and other processes enhanced protein extraction, and some animal studies were conducted to verify their health-promoting effects. Various studies have focused on developing practical methods for their production, purification, and identification of bioactive peptides. The emerging trends of in silico peptide therapies, computational approaches, artificial intelligence, and the prospects of microalgae peptide research are briefly highlighted. Moreover, this article focused on the potential of microalgae-derived peptides as functional food ingredients their role in promoting health, and their future applications in nutraceutical industries. It also discussed the challenges of bioavailability in functional foods.
Collapse
Affiliation(s)
- Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Yueting Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Tingting Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, no. 17, Chunhui Road, Laishan District, Yantai, Shandong Province 264003, P.R. China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, no. 168, Wenhai Middle Road, Qingdao, Shandong Province 266237, P.R. China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, P.R. China
| |
Collapse
|
2
|
Yang C, Xie T, Cai M, Xu X, Li M, Liu P, Lan X. Investigation of the Interaction Between Angiotensin-Converting Enzyme (ACE) and ACE-Inhibitory Tripeptide from Casein. Int J Mol Sci 2024; 25:13021. [PMID: 39684732 DOI: 10.3390/ijms252313021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitory peptides exhibit antihypertensive effects by inhibiting ACE activity, and the study of the interaction between ACEs and inhibitory peptides is important for exploring new therapeutic strategies. In this study, the ACE-inhibitory peptide isolated from casein hydrolysate with the amino acid sequence Leu-Leu-Tyr (LLY) exhibited high ACE-inhibitory activity and stability, which holds significant implications for biochemistry and pharmaceutical applications. Furthermore, systematic investigations were conducted on the interaction between ACE and LLY through various approaches. The Lineweaver-Burk plot indicated the non-competitive inhibition pattern of LLY, suggesting that it binds to the enzyme at the non-active site, and the results were further validated by a molecular docking study. Additionally, multispectral experiments and atomic force microscopy were conducted to further elucidate the underlying mechanism of peptide activity. The findings indicated that LLY could induce a conformational change in ACE, thereby inhibiting its activity. This study contributes to a deeper understanding of the mechanism of action of ACE-inhibitory peptides and bears important significance for drug development in hypertension.
Collapse
Affiliation(s)
- Cuicui Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Tianzhao Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Mengmeng Cai
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiaoting Xu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Muzijun Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Pengru Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
3
|
Antony P, Baby B, Rahma A, Samad SA, Dhaheri YA, Vijayan R. Molecular insights into the inhibition of angiotensin-converting enzyme 1 by hemopressin peptides. Sci Rep 2024; 14:28726. [PMID: 39567621 PMCID: PMC11579378 DOI: 10.1038/s41598-024-78893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Inhibiting angiotensin-converting enzyme 1 (ACE1) is a key strategy for managing hypertension as it prevents the formation of angiotensin II, a potent vasoconstrictor. Given the adverse effects associated with synthetic inhibitors, there is an increasing focus on exploring natural bioactive peptides as potential ACE1 inhibitors. Hemopressins (Hp) are peptides derived from hemoglobin. The present study investigated the ACE1 inhibitory activity of two Hp variants, Hp bearing phenylalaine (Hp-F) and Hp bearing leucine (Hp-L), using a combination of in vitro and in silico methodologies. In enzyme inhibition assays, Hp-L variants exhibited better inhibition when compared to Hp-F variants. Furthermore, in molecular docking and molecular dynamics simulations, Hp-L variants displayed favorable binding characteristics, in terms of binding energy and interactions, supporting their potential to be effective ACE1 inhibitors. The peptides were observed to interact with key residues involved in binding widely used ACE1 inhibitors. Notably, peptide RVD-Hp-L (RVDPVNFKLLSH) showed the lowest IC50 value, higher binding affinity and sustained interactions while binding to the catalytic site of ACE1. Finally, the substitution of phenylalanine with leucine in hemopressins significantly enhances their binding affinity and inhibitory potency.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates
| | - Bincy Baby
- Department of Biology College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates
| | - Aaesha Rahma
- Department of Biology College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates
| | - Shamaa Abdul Samad
- Department of Biology College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates.
- The Big Data Analytics Center, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab, United Arab Emirates.
| |
Collapse
|
4
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Muela T, Abellán A, Bande-De León C, Gómez P, Gil MD. Effect of Macro and Microalgae Addition on Nutritional, Physicochemical, Sensorial, and Functional Properties of a Vegetable Cream. Foods 2024; 13:1651. [PMID: 38890879 PMCID: PMC11171859 DOI: 10.3390/foods13111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Algae are a booming resource in the food industry due to their several health benefits. This study assesses the impact of the combined use of selected macro- and microalgae to improve the nutritional profile and the labeling of a vegetable cream by the introduction of nutrition and health claims. As macroalgae, two Ascophyllum nodosum L., one natural (An) and one smoked (AnS), were selected for their high iodine concentration and flavor notes. A new strain of Chlorella vulgaris, golden (CvG), was selected as the microalgae, which is rich in proteins and has a neutral sensorial profile (golden color and mild flavor). In this study, two vegetable creams were compared. The control (CTRL) versus one enriched with a mixture of macroalgae and microalgae (CV-AN). Sensory, physicochemical, and functional properties of both vegetable creams were evaluated. The bioactivity assessed was the effect of iodine as a health claim and antioxidant and antihypertensive properties. CV-AN vegetable cream showed significantly higher values (p < 0.05) for protein content, iodine value, and antioxidant activity, with no significant differences (p > 0.05) in antihypertensive activity or sensory panel. The incorporation of these algae resulted in a vegetable cream with a better nutritional profile and sensory acceptability comparable to the control, offering protein and iodine source claims in the labeling.
Collapse
Affiliation(s)
- Teresa Muela
- Department of Nutrition and Food Technology, Universidad Católica de Murcia-UCAM, Campus de los Jerónimos, 30107 Murcia, Spain; (A.A.); (C.B.-D.L.); (P.G.); (M.D.G.)
| | | | | | | | | |
Collapse
|
6
|
Yurika N, Montuori E, Lauritano C. Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases. Mar Drugs 2024; 22:229. [PMID: 38786620 PMCID: PMC11122832 DOI: 10.3390/md22050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Heart disease is one of the leading causes of death worldwide, and it is estimated that 17.9 million people die of it each year. The risk factors for cardiovascular diseases are attributable to an unhealthy and sedentary lifestyle, poor nutrition, stress, genetic predisposition, diabetes, obesity, and aging. Marine microalgae have been the subject of numerous studies for their potential activity against several human diseases. They produce a plethora of primary and secondary metabolites such as essential nutrients, vitamins, pigments, and omega-3 fatty acid. Many of these molecules have antioxidant properties and have been shown to play a role in the prevention of heart diseases. The aim of this review is to summarize recent studies on the discovery of marine microalgal compounds and bioactivities for cardiovascular diseases, including in vitro and in vivo studies, showing and discussing recent discoveries and trends. The most promising results were found for microalgal polysaccharides, peptides and carotenoids. In conclusion, the overall data summarized here show that microalgae-based supplementation has the potential to improve age-related cardiovascular diseases and we expect more clinical studies in the future.
Collapse
Affiliation(s)
- Nova Yurika
- Marine Biology Research Group, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium;
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
| | - Eleonora Montuori
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
| |
Collapse
|
7
|
Gao X, Zhang C, Wang N, Lin JM, Dang Y, Zhao Y. Screening of Oral Potential Angiotensin-Converting Enzyme Inhibitory Peptides from Zizyphus jujuba Proteins Based on Gastrointestinal Digestion In Vivo. Int J Mol Sci 2023; 24:15848. [PMID: 37958831 PMCID: PMC10648141 DOI: 10.3390/ijms242115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Plant proteins are a good source of active peptides, which can exert physiological effects on the body. Predicting the possible activity of plant proteins and obtaining active peptides with oral potential are challenging. In this study, the potential activity of peptides from Zizyphus jujuba proteins after in silico simulated gastrointestinal digestion was predicted using the BIOPEP-UWM™ database. The ACE-inhibitory activity needs to be further investigated. The actual peptides in mouse intestines after the oral administration of Zizyphus jujuba protein were collected and analyzed, 113 Zizyphus jujuba peptides were identified, and 3D-QSAR models of the ACE-inhibitory activity were created and validated using a training set (34 peptides) and a test set (12 peptides). Three peptides, RLPHV, TVKPGL and KALVAP, were screened using the 3D-QSAR model and were found to bind to the active sites of the ACE enzyme, and their IC50 values were determined. Their values were 6.01, 3.81, and 17.06 μM, respectively. The in vitro digestion stabilities of the RLPHV, TVKPGL, and KALVAP peptides were 82%, 90%, and 78%. This article provides an integrated method for studying bioactive peptides derived from plant proteins.
Collapse
Affiliation(s)
- Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (X.G.); (N.W.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chaoying Zhang
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (X.G.); (N.W.)
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (X.G.); (N.W.)
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Nawata K. Risk factors for heart, cerebrovascular, and kidney diseases: evaluation of potential side effects of medications to control hypertension, hyperglycemia, and hypercholesterolemia. Front Cardiovasc Med 2023; 10:1103250. [PMID: 37332577 PMCID: PMC10272769 DOI: 10.3389/fcvm.2023.1103250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background Heart disease (HD), cerebrovascular disease (CBD), and kidney disease (KD) are serious diseases worldwide. These diseases constitute the leading causes of death worldwide and are costly to treat. An analysis of risk factors is necessary to prevent these diseases. Data and Methods Risk factors were analyzed using data from 2,837,334, 2,864,874, and 2,870,262 medical checkups obtained from the JMDC Claims Database. The side effects of medications used to control hypertension (antihypertensive medications), hyperglycemia (antihyperglycemic medications), and hypercholesterolemia (cholesterol medications), including their interactions, were also evaluated. Logit models were used to calculate the odds ratios and confidence intervals. The sample period was from January 2005 to September 2019. Results Age and history of diseases were found to be very important factors, and the risk of having diseases could be almost doubled. Urine protein levels and recent large weight changes were also important factors for all three diseases and made the risks 10%-30% higher, except for KD. For KD, the risk was more than double for individuals with high urine protein levels. Negative side effects were observed with antihypertensive, antihyperglycemic, and cholesterol medications. In particular, when antihypertensive medications were used, the risks were almost doubled for HD and CBD. The risk would be triple for KD when individuals were taking antihypertensive medications. If they did not take antihypertensive medications and took other medications, these values were lower (20%-40% for HD, 50%-70% for CBD, and 60%-90% for KD). The interactions between the different types of medications were not very large. When antihypertensive and cholesterol medications were used simultaneously, the risk increased significantly in cases of HD and KD. Conclusion It is very important for individuals with risk factors to improve their physical condition for the prevention of these diseases. Taking antihypertensive, antihyperglycemic, and cholesterol medications, especially antihypertensive medications, may be serious risk factors. Special care and additional studies are necessary to prescribe these medications, particularly antihypertensive medications. Limitations No experimental interventions were performed. As the dataset was comprised of the results of health checkups of workers in Japan, individuals aged 76 and above were not included. Since the dataset only contained information obtained in Japan and the Japanese are ethnically homogeneous, potential ethnic effects on the diseases were not evaluated.
Collapse
Affiliation(s)
- Kazumitsu Nawata
- Hitotsubashi Institute for Advanced Study (HISA), Hitotsubashi University, Kunitachi, Japan
| |
Collapse
|
9
|
Tan BL, Norhaizan ME, Chan LC. Rice Bran: From Waste to Nutritious Food Ingredients. Nutrients 2023; 15:nu15112503. [PMID: 37299466 DOI: 10.3390/nu15112503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Rice (Oryza sativa L.) is a principal food for more than half of the world's people. Rice is predominantly consumed as white rice, a refined grain that is produced during the rice milling process which removes the bran and germ and leaves the starchy endosperm. Rice bran is a by-product produced from the rice milling process, which contains many bioactive compounds, for instance, phenolic compounds, tocotrienols, tocopherols, and γ-oryzanol. These bioactive compounds are thought to protect against cancer, vascular disease, and type 2 diabetes. Extraction of rice bran oil also generates various by-products including rice bran wax, defatted rice bran, filtered cake, and rice acid oil, and some of them exert bioactive substances that could be utilized as functional food ingredients. However, rice bran is often utilized as animal feed or discarded as waste. Therefore, this review aimed to discuss the role of rice bran in metabolic ailments. The bioactive constituents and food product application of rice bran were also highlighted in this study. Collectively, a better understanding of the underlying molecular mechanism and the role of these bioactive compounds exerted in the rice bran would provide a useful approach for the food industry and prevent metabolic ailments.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Healthcare Professional, Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra, Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lee Chin Chan
- Biovalence Sdn. Bhd., 22, Jalan SS25/34, Taman Mayang, 47301 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Lin L, He YL, Liu Y, Hong P, Zhou C, Sun S, Qian ZJ. Comparative in silico and in vitro study of the stability and biological activity of an octapeptide from microalgae Isochrysis zhanjiangensis and its truncated short peptide. Food Funct 2023; 14:3659-3672. [PMID: 36967639 DOI: 10.1039/d3fo00129f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
In this study, the structural characteristics and active sites of the octapeptide (IIAVEAGC), the pentapeptide (IIAVE) and tripeptide (AGC) were studied in silica and in vitro.
Collapse
Affiliation(s)
- Liyuan Lin
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Yuan-Lin He
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Pengzhi Hong
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chunxia Zhou
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Shengli Sun
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| |
Collapse
|
11
|
|
12
|
Okagu IU, Ezeorba TPC, Aham EC, Aguchem RN, Nechi RN. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100078. [PMID: 35415696 PMCID: PMC8991738 DOI: 10.1016/j.fochms.2022.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Hypertension has remained a silent-killer. Novel peptides recently isolated from food proteins. Molecular mechanism of blood pressure-lowering: renin and ACE-inhibition, and beyond. Proposed molecular mechanisms for future research. Novel peptides are excellent candidates for nutraceutical development.
Hypertension impacts negatively on the quality of life of sufferers, and complications associated with uncontrolled hypertension are life-threatening. Hence, many research efforts are exploring the antihypertensive properties of bioactive peptides derived from food proteins using in vitro ACE-inhibitory assay, experimentally-induced and spontaneous hypertensive rats, normotensive and hypertensive human models. In this study, the cellular and molecular mechanisms of blood pressure-lowering properties of novel peptides reported in recent studies (2015-July 30, 2021) were discussed. In addition to common mechanisms such as the inhibition of angiotensin I-converting enzyme (ACE) and renin activities, recently recognized mechanisms through which bioactive peptides exert their antihypertensive properties including the induction of vasodilation via upregulation of cyclo-oxygenase (COX) and prostaglandin receptor and endothelial nitric oxide synthase expression and L-type Ca2+ channel blockade were presented. Similarly, emerging mechanisms of blood pressure-lowering by bioactive peptides such as modulation of inflammation (TNF-α, and other cytokines signaling), oxidative stress (Keap-1/Nrf2/ARE/HO-1 and related signaling pathways), PPAR-γ/caspase3/MAPK signaling pathways and inhibition of lipid accumulation were discussed. The review also highlighted factors that influence the antihypertensive properties of peptides such as method of hydrolysis (type and number of enzymes, and chemical used for hydrolysis, and microbial fermentation), and amino acid sequence and chain length of peptides.
Collapse
Affiliation(s)
- Innocent U Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | | | - Emmanuel C Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Rita N Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Regina N Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
13
|
Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res Int 2022; 157:111338. [DOI: 10.1016/j.foodres.2022.111338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
|
14
|
Purcell D, Packer MA, Hayes M. Angiotensin-I-Converting Enzyme Inhibitory Activity of Protein Hydrolysates Generated from the Macroalga Laminaria digitata (Hudson) JV Lamouroux 1813. Foods 2022; 11:1792. [PMID: 35741988 PMCID: PMC9222848 DOI: 10.3390/foods11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Seaweeds have a long history of use as both food and medicine, especially in Asian cultures. Moreover, there is growing interest in the use of seaweed ingredients and bioactive compounds in pharmaceutical and nutraceutical products. One ailment that seaweed bioactive compounds may impact is hypertension caused by the enzyme Angiotensin Converting Enzyme 1 (ACE-1; EC 3.4.15.1), found within the Renin-Angiotensin Aldosterone System (RAAS), which causes vasoconstriction of blood vessels, including veins and arteries. The aim of this paper is to generate bioactive peptide containing protein hydrolysates from the brown seaweed Laminaria digitata (Hudson) JV Lamouroux 1813. Proteins were extracted from this seaweed by disrupting the seaweed cell wall using a combination of carbohydrases and proteolytic enzymes. Bioactive peptide containing permeates were generated from L. digitata protein hydrolysates, and both hydrolysates and permeates were screened for their ability to inhibit the enzyme ACE-1. The protein content of the permeate fractions was found to be 23.87% compared to the untreated seaweed, which contained 15.08% protein using LECO analysis. Hydrolysis and filtration resulted in a "white" protein powder, and the protein content of this powder increased by 9% compared to the whole seaweed. The total amino acid (TAA) content of the L. digitata protein permeate was 53.65 g/100 g of the sample, and contains over 32% essential amino acids (EAA). Furthermore, the L. digitata permeate was found to inhibit the ACE-1 enzyme by 75% when compared to the commercial drug Captopril© when assayed at a concentration of 1 mg/mL. The inhibition of ACE-1 (the IC50 value) of 590 µg/mL for the L. digitata permeate compares well with Captopril©, which had 100% inhibition of ACE-1, with an IC50 value of 500 µg/mL. This study indicates that there is potential to develop protein powders with ACE-1 inhibitory bioactivities from the brown seaweed L. digitata using enzymatic hydrolysis as a cell disruption and protein extraction/hydrolysate generation procedure.
Collapse
Affiliation(s)
- Diane Purcell
- Food BioSciences, Teagasc, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland;
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand;
| | | | - Maria Hayes
- Food BioSciences, Teagasc, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland;
| |
Collapse
|
15
|
Lertampaiporn S, Hongsthong A, Wattanapornprom W, Thammarongtham C. Ensemble-AHTPpred: A Robust Ensemble Machine Learning Model Integrated With a New Composite Feature for Identifying Antihypertensive Peptides. Front Genet 2022; 13:883766. [PMID: 35571042 PMCID: PMC9096110 DOI: 10.3389/fgene.2022.883766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension or elevated blood pressure is a serious medical condition that significantly increases the risks of cardiovascular disease, heart disease, diabetes, stroke, kidney disease, and other health problems, that affect people worldwide. Thus, hypertension is one of the major global causes of premature death. Regarding the prevention and treatment of hypertension with no or few side effects, antihypertensive peptides (AHTPs) obtained from natural sources might be useful as nutraceuticals. Therefore, the search for alternative/novel AHTPs in food or natural sources has received much attention, as AHTPs may be functional agents for human health. AHTPs have been observed in diverse organisms, although many of them remain underinvestigated. The identification of peptides with antihypertensive activity in the laboratory is time- and resource-consuming. Alternatively, computational methods based on robust machine learning can identify or screen potential AHTP candidates prior to experimental verification. In this paper, we propose Ensemble-AHTPpred, an ensemble machine learning algorithm composed of a random forest (RF), a support vector machine (SVM), and extreme gradient boosting (XGB), with the aim of integrating diverse heterogeneous algorithms to enhance the robustness of the final predictive model. The selected feature set includes various computed features, such as various physicochemical properties, amino acid compositions (AACs), transitions, n-grams, and secondary structure-related information; these features are able to learn more information in terms of analyzing or explaining the characteristics of the predicted peptide. In addition, the tool is integrated with a newly proposed composite feature (generated based on a logistic regression function) that combines various feature aspects to enable improved AHTP characterization. Our tool, Ensemble-AHTPpred, achieved an overall accuracy above 90% on independent test data. Additionally, the approach was applied to novel experimentally validated AHTPs, obtained from recent studies, which did not overlap with the training and test datasets, and the tool could precisely predict these AHTPs.
Collapse
Affiliation(s)
- Supatcha Lertampaiporn
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Apiradee Hongsthong
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Warin Wattanapornprom
- Applied Computer Science Program, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Chinae Thammarongtham
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- *Correspondence: Chinae Thammarongtham,
| |
Collapse
|