1
|
Picard E, Youale J, Hyman MJ, Xie E, Achiedo S, Kaufmann GT, Moir J, Daruich A, Crisanti P, Torriglia A, Polak M, Behar-Cohen F, Skondra D, Berdugo M. Glyburide confers neuroprotection against age-related macular degeneration (AMD). Transl Res 2024; 272:81-94. [PMID: 38815899 DOI: 10.1016/j.trsl.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Glyburide, a sulfonylurea drug used to treat type 2 diabetes, boasts neuroprotective effects by targeting the sulfonylurea receptor 1 (SUR1) and associated ion channels in various cell types, including those in the central nervous system and the retina. Previously, we demonstrated that glyburide therapy improved retinal function and structure in a rat model of diabetic retinopathy. In the present study, we explore the application of glyburide in non-neovascular ("dry") age-related macular degeneration (AMD), another progressive disease characterized by oxidative stress-induced damage and neuroinflammation that trigger cell death in the retina. We show that glyburide administration to a human cone cell line confers protection against oxidative stress, inflammasome activation, and apoptosis. To corroborate our in vitro results, we also conducted a case-control study, controlling for AMD risk factors and other diabetes medications. It showed that glyburide use in patients reduces the odds of new-onset dry AMD. A positive dose-response relationship is observed from this analysis, in which higher cumulative doses of glyburide further reduce the odds of new-onset dry AMD. In the quest for novel therapies for AMD, glyburide emerges as a promising repurposable drug given its known safety profile. The results from this study provide insights into the multifaceted actions of glyburide and its potential as a neuroprotective agent for retinal diseases; however, further preclinical and clinical studies are needed to validate its therapeutic potential in the context of degenerative retinal disorders such as AMD.
Collapse
Affiliation(s)
- Emilie Picard
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Jenny Youale
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Max J Hyman
- enter for Health and the Social Sciences, University of Chicago, Chicago, Illinois
| | - Edward Xie
- Stony Brook University Hospital, Stony Brook, NY
| | - Seiki Achiedo
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | | | - John Moir
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Alejandra Daruich
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France; AP-HP, Service d'Ophtalmologie, Hôpital universitaire Necker-Enfants Malades, Paris, France
| | - Patricia Crisanti
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Alicia Torriglia
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| | - Michel Polak
- AP-HP, Service d'endocrinologie, diabétologie et gynécologie pédiatriques, Hôpital universitaire Necker-Enfants Malades, Paris, France; Inserm U1016, Institut Cochin, Paris, France; Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Francine Behar-Cohen
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France; AP-HP, OphtalmoPôle, Hôpital Cochin, Department of Ophthalmology and Visual Science, Paris, France.
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois
| | - Marianne Berdugo
- Inserm UMRS1138, Team 1: Physiopathology of ocular diseases-Therapeutic innovations, Centre de Recherche des Cordeliers, Paris, France; Sorbonne Université UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Cité, Faculté de Santé, Paris, France
| |
Collapse
|
2
|
Cai C, Gu C, Meng C, He S, Thashi L, Deji D, Zheng Z, Qiu Q. Therapeutic Effects of Metformin on Central Nervous System Diseases: A Focus on Protection of Neurovascular Unit. Pharm Res 2024; 41:1907-1920. [PMID: 39375240 DOI: 10.1007/s11095-024-03777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Metformin is one of the most commonly used oral hypoglycemic drugs in clinical practice, with unique roles in neurodegeneration and vascular lesions. Neurodegeneration and vasculopathy coexist in many diseases and typically affect the neurovascular unit (NVU), a minimal structural and functional unit in the central nervous system. Its components interact with one another and are indispensable for maintaining tissue homeostasis. This review focuses on retinal (diabetic retinopathy, retinitis pigmentosa) and cerebral (ischemic stroke, Alzheimer's disease) diseases to explore the effects of metformin on the NVU. Metformin has a preliminarily confirmed therapeutic effect on the retinal NUV, affecting many of its components, such as photoreceptors (cones and rods), microglia, ganglion, Müller, and vascular endothelial cells. Since it rapidly penetrates the blood-brain barrier (BBB) and accumulates in the brain, metformin also has an extensively studied neuronal protective effect in neuronal diseases. Its mechanism affects various NVU components, including pericytes, astrocytes, microglia, and vascular endothelial cells, mainly serving to protect the BBB. Regulating the inflammatory response in NVU (especially neurons and microglia) may be the main mechanism of metformin in improving central nervous system related diseases. Metformin may be a potential drug for treating diseases associated with NVU deterioration, however, more trials are needed to validate its timing, duration, dose, clinical effects, and side effects.
Collapse
Affiliation(s)
- Chunyang Cai
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Chunren Meng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuai He
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China
| | - Lhamo Thashi
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China
| | - Draga Deji
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China.
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China.
- High Altitude Ocular Disease Research Center of People's Hospital of Shigatse City and Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Kashihara T, Morita Y, Hatta M, Inoue S, Suzuki Y, Morita A, Nakahara T. YAP activation in Müller cells protects against NMDA-induced retinal ganglion cell injury by regulating Bcl-xL expression. Front Pharmacol 2024; 15:1446521. [PMID: 39166115 PMCID: PMC11333228 DOI: 10.3389/fphar.2024.1446521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Retinal neurodegeneration, characterized by retinal ganglion cell (RGC) death, is a leading cause of vision impairment and loss in blind diseases, such as glaucoma. Müller cells play crucial roles in maintaining retinal homeostasis. Thus, dysfunction of Müller cells has been implicated as one of the causes of retinal diseases. Yes-associated protein 1 (YAP), a nuclear effector of the Hippo pathway, regulates mammalian cell survival. In this study, we investigated the role of YAP in Müller cells during N-methyl-D-aspartic acid (NMDA)-induced excitotoxic RGC injury in rats. We found that YAP expression increased and was activated in Müller cells after NMDA-induced RGC injury. This YAP response was partly due to an increase in Yap mRNA levels, although it may be independent of the Hippo pathway and β-TrCP-mediated YAP degradation. Morphological analysis revealed that verteporfin, a selective YAP inhibitor, exacerbated NMDA-induced RGC degeneration, suggesting that YAP activation in Müller cells contributes to RGC survival in NMDA-treated retinas. Studies in the rat Müller cell line (rMC-1) demonstrated that overexpression of YAP increased the levels of Bcl-xL, while verteporfin decreased the levels of Bcl-xL and cell viability and increased the levels of cytochrome c released from mitochondria and cleaved caspase-3. Finally, we found that Bcl-xL expression increased slightly in NMDA-treated retinas, whereas intravitreal injection of verteporfin suppressed this increase. Our findings suggest that activated YAP in Müller cells protects against NMDA-induced RGC injury by upregulating Bcl-xL expression.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
4
|
Zhang X, Fu Q, Cai Y, Li X, Chen L, Jiang Y, Chen Y. Genetic correlation between circulating cytokines and risk of three ophthalmic diseases: a bidirectional two-sample Mendelian randomization study. Hum Mol Genet 2024; 33:1241-1249. [PMID: 38664229 DOI: 10.1093/hmg/ddae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE Pathogenesis and the associated risk factors of cataracts, glaucoma, and age-related macular degeneration (AMD) remain unclear. We aimed to investigate causal relationships between circulating cytokine levels and the development of these diseases. PATIENTS AND METHODS Genetic instrumental variables for circulating cytokines were derived from a genome-wide association study of 8293 European participants. Summary-level data for AMD, glaucoma, and senile cataract were obtained from the FinnGen database. The inverse variance weighted (IVW) was the main Mendelian randomization (MR) analysis method. The Cochran's Q, MR-Egger regression, and MR pleiotropy residual sum and outlier test were used for sensitivity analysis. RESULTS Based on the IVW method, MR analysis demonstrated five circulating cytokines suggestively associated with AMD (SCGF-β, 1.099 [95%CI, 1.037-1.166], P = 0.002; SCF, 1.155 [95%CI, 1.015-1.315], P = 0.029; MCP-1, 1.103 [95%CI, 1.012-1.202], P = 0.026; IL-10, 1.102 [95%CI, 1.012-1.200], P = 0.025; eotaxin, 1.086 [95%CI, 1.002-1.176], P = 0.044), five suggestively linked with glaucoma (MCP-1, 0.945 [95%CI, 0.894-0.999], P = 0.047; IL1ra, 0.886 [95%CI, 0.809-0.969], P = 0.008; IL-1β, 0.866 [95%CI, 0.762-0.983], P = 0.027; IL-9, 0.908 [95%CI, 0.841-0.980], P = 0.014; IL2ra, 1.065 [95%CI, 1.004-1.130], P = 0.035), and four suggestively associated with senile cataract (TRAIL, 1.043 [95%CI, 1.009-1.077], P = 0.011; IL-16, 1.032 [95%CI, 1.001-1.064], P = 0.046; IL1ra, 0.942 [95%CI, 0.887-0.999], P = 0.047; FGF-basic, 1.144 [95%CI, 1.052-1.244], P = 0.002). Furthermore, sensitivity analysis results supported the above associations. CONCLUSION This study highlights the involvement of several circulating cytokines in the development ophthalmic diseases and holds potential as viable pharmacological targets for these diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Qiangqiang Fu
- Department of General Practice, Clinical Research Center for General Practice, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Xianglian Li
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| |
Collapse
|
5
|
Yamagishi H, Kirai N, Morita A, Kashihara T, Nakahara T. Role of monocarboxylate transporters in AMPK-mediated protection against excitotoxic injury in the rat retina. Eur J Pharmacol 2024; 970:176510. [PMID: 38493917 DOI: 10.1016/j.ejphar.2024.176510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway protects against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal injury. AMPK activation enhances fatty acid metabolism and ketone body synthesis. Ketone bodies are transported into neurons by monocarboxylate transporters (MCTs) and exert neuroprotective effects. In this study, we examined the distribution and expression levels of MCT1 and MCT2 in the retina and analyzed the effects of pharmacological inhibition of MCTs on the protective effects of metformin and 5-aminoimidazole-4-carboxamide (AICAR), activators of AMPK, against NMDA-induced retinal injury in rats. MCT1 was expressed in the blood vessels, processes of astrocytes and Müller cells, and inner segments of photoreceptors in the rat retina, whereas MCT2 was expressed in neuronal cells in the ganglion cell layer (GCL) and in astrocyte processes. The expression levels of MCT2, but not MCT1, decreased one day after intravitreal injection of NMDA (200 nmol). Intravitreal injection of NMDA decreased the number of cells in the GCL compared to the vehicle seven days after injection. Simultaneous injection of metformin (20 nmol) or AICAR (50 nmol) with NMDA attenuated NMDA-induced cell loss in the GCL, and these protective effects were attenuated by AR-C155858 (1 pmol), an inhibitor of MCTs. AR-C155858 alone had no significant effect on the retinal structure. These results suggest that AMPK-activating compounds protect against NMDA-induced excitotoxic retinal injury via mechanisms involving MCTs in rats. NMDA-induced neurotoxicity may be associated with retinal neurodegenerative changes in glaucoma and diabetic retinopathy. Therefore, AMPK-activating compounds may be effective in managing these retinal diseases.
Collapse
Affiliation(s)
- Honoka Yamagishi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Nozomu Kirai
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
6
|
Yagasaki R, Morita A, Mori A, Sakamoto K, Nakahara T. The Anti-Diabetic Drug Metformin Suppresses Pathological Retinal Angiogenesis via Blocking the mTORC1 Signaling Pathway in Mice (Metformin Suppresses Pathological Angiogenesis). Curr Eye Res 2024; 49:505-512. [PMID: 38251680 DOI: 10.1080/02713683.2024.2302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Metformin, a biguanide antihyperglycemic drug, can exert various beneficial effects in addition to its glucose-lowering effect. The effects of metformin are mainly mediated by AMP-activated protein kinase (AMPK)-dependent pathway. AMPK activation interferes with the action of the mammalian target of rapamycin complex 1 (mTORC1), and blockade of mTORC1 pathway suppresses pathological retinal angiogenesis. Therefore, in this study, we examined the effects of metformin on pathological angiogenesis and mTORC1 activity in the retinas of mice with oxygen-induced retinopathy (OIR). METHODS OIR was induced by exposing the mice to 80% oxygen from postnatal day (P) 7 to P10. The OIR mice were treated with metformin, rapamycin (an inhibitor of mTORC1), or the vehicle from P10 to P12 or P14. The formation of neovascular tufts, revascularization in the central avascular areas, expression of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) 2, and phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, were evaluated at P10, P13, or P15. RESULTS Neovascular tufts and vascular growth in the central avascular areas were observed in the retinas of P15 OIR mice. The formation of neovascular tufts, but not the revascularization in the central avascular areas, was attenuated by metformin administration from P10 to P14. Metformin had no significant inhibitory effect on the expression of VEGF and VEGFR2, but it reduced the pS6 immunoreactivity in vascular cells at the sites of angiogenesis. Rapamycin completely blocked the phosphorylation of ribosomal protein S6 and markedly reduced the formation of neovascular tufts. CONCLUSIONS These results suggest that metformin partially suppresses the formation of neovascular tufts on the retinal surface by blocking the mTORC1 signaling pathway. Metformin may exert beneficial effects against the progression of ocular diseases in which abnormal angiogenesis is associated with the pathogenesis.
Collapse
Affiliation(s)
- Rina Yagasaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
7
|
Ma D, Deng W, Khera Z, Sajitha TA, Wang X, Wollstein G, Schuman JS, Lee S, Shi H, Ju MJ, Matsubara J, Beg MF, Sarunic M, Sappington RM, Chan KC. Early inner plexiform layer thinning and retinal nerve fiber layer thickening in excitotoxic retinal injury using deep learning-assisted optical coherence tomography. Acta Neuropathol Commun 2024; 12:19. [PMID: 38303097 PMCID: PMC10835918 DOI: 10.1186/s40478-024-01732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.
Collapse
Affiliation(s)
- Da Ma
- Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
- Wake Forest University Health Sciences, Winston-Salem, NC, USA.
- Translational Eye and Vision Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Wenyu Deng
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Zain Khera
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Thajunnisa A Sajitha
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Xinlei Wang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
- Wills Eye Hospital, Philadelphia, PA, USA
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Haolun Shi
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Marinko Sarunic
- Institute of Ophthalmology, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Rebecca M Sappington
- Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Translational Eye and Vision Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA.
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA.
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
8
|
Yao Y, Li X, Yang X, Mou H, Wei L. Dihydromyricetin promotes GLP-1 release and glucose uptake by STC-1 cells and enhances the effects of metformin upon STC-1 cells and diabetic mouse model. Tissue Cell 2023; 82:102108. [PMID: 37229936 DOI: 10.1016/j.tice.2023.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is an intestinally produced hormone released by the L-cells to stimulate glucose-dependent insulin release. Vine tea, a traditional Chinese medicine made from the delicate stem and leaves of Ampelopsis grossedentata, has been reported to exert antidiabetic effects; however, the role and mechanism of dihydromyricetin, the main active ingredient of vine tea, remain unclear. METHODS AND RESULTS MTT assay was applied to detect cell viability. GLP-1 levels in the culture medium using a mouse GLP-1 ELISA kit. The level of GLP-1 in cells was examined using IF staining. NBDG assay was performed to evaluate the glucose uptake by STC-1 cells. The in vivo roles of dihydromyricetin in the diabetes mellitus mouse model were investigated. In this study, 25 μM dihydromyricetin, was found to cause no significant suppression of STC-1 cell viability. Dihydromyricetin markedly elevated GLP-1 secretion and glucose uptake by STC-1 cells. Although metformin increased GLP-1 release and glucose uptake by STC-1 cells more, dihydromyricetin further enhanced the effects of metformin. Moreover, dihydromyricetin or metformin alone significantly promoted the phosphorylation of AMPK, increased GLUT4 levels, inhibited ERK1/2 and IRS-1 phosphorylation, and decreased NF-κB levels, and dihydromyricetin also enhanced the effects of metformin on these factors. The in vivo results further confirmed the antidiabetic function of dihydromyricetin. CONCLUSION Dihydromyricetin promotes GLP-1 release and glucose uptake by STC-1 cells and enhances the effects of metformin upon STC-1 cells and diabetic mice, which might ameliorate diabetes through improving L cell functions. The Erk1/2 and AMPK signaling pathways might be involved.
Collapse
Affiliation(s)
- Yuanzhi Yao
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China
| | - Xiaoying Li
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China
| | - Xiaoqin Yang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Mou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lin Wei
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China; College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
9
|
Melatonin protects against NMDA-induced retinal ganglion cell injury by regulating the microglia-TNFα-RGC p38 MAPK pathway. Int Immunopharmacol 2023; 118:109976. [PMID: 37098655 DOI: 10.1016/j.intimp.2023.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Glaucoma, one of the most common ocular neurodegenerative diseases worldwide, is characterized by retinal ganglion cell (RGC) loss. There is a large body of literature that describes the neuroprotective role of melatonin against neurodegenerative diseases by regulating neuroinflammation, although the exact mechanism through which melatonin acts on RGC is still uncertain. This study assessed the protective effects of melatonin using a NMDA-induced RGC injury model, and studied the possible mechanisms involved in this process. Melatonin promoted RGC survival, improved retinal function, and inhibited the apoptosis and necrosis of retinal cells. To understand the mechanism of the neuroprotective effects of melatonin on RGC, microglia and inflammation-related pathways were assessed after melatonin administration and microglia ablation. Melatonin promoted RGC survival by suppressing microglia-derived proinflammatory cytokines, in particular TNFα, which in turn inhibited the activation of p38 MAPK pathway. Inhibiting TNFα or manipulating p38 MAPK pathway protected damaged RGC. Our results suggest that melatonin protects against NMDA-induced RGC injury by inhibiting the microglial TNFα-RGC p38 MAPK pathway. It should be considered a candidate neuroprotective therapy against retinal neurodegenerative diseases.
Collapse
|
10
|
Gaddini L, Bernardo A, Greco A, Campa A, Esposito G, Matteucci A. Adaptive Response in Rat Retinal Cell Cultures Irradiated with γ-rays. Int J Mol Sci 2023; 24:1972. [PMID: 36768293 PMCID: PMC9916556 DOI: 10.3390/ijms24031972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Retina can receive incidental γ-ray exposure from various sources. For example, although radiation therapy is a crucial tool for managing head and neck tumors, patients may develop ocular complications as collateral damage from accidental irradiation. Recently, there has been concern that retinal irradiation during space flight may compromise mission goals and long-term quality of life after space travel. Previously, in our in vitro model, we proved that immature retinal cells are more vulnerable to γ-radiation than differentiated neurons. Here, we investigate if a low-dose pre-irradiation (0.025 Gy), known to have a protective effect in various contexts, can affect DNA damage and oxidative stress in cells exposed to a high dose of γ-rays (2 Gy). Our results reveal that pre-irradiation reduces 2 Gy effects in apoptotic cell number, H2AX phosphorylation and oxidative stress. These defensive effects are also evident in glial cells (reduction in GFAP and ED1 levels) and antioxidant enzymes (catalase and CuZnSOD). Overall, our results confirm that rat retinal cultures can be an exciting tool to study γ-irradiation toxic effects on retinal tissue and speculate that low irradiation may enhance the skill of retinal cells to reduce damage induced by higher doses.
Collapse
Affiliation(s)
- Lucia Gaddini
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonietta Bernardo
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Anita Greco
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Alessandro Campa
- National Centre for Radiation Protecti on and Computational Physics, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppe Esposito
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, 00185 Rome, Italy
| | - Andrea Matteucci
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
11
|
Mori A, Ezawa Y, Asano D, Kanamori T, Morita A, Kashihara T, Sakamoto K, Nakahara T. Resveratrol dilates arterioles and protects against N-methyl-d-aspartic acid-induced excitotoxicity in the rat retina. Neurosci Lett 2023; 793:136999. [PMID: 36470506 DOI: 10.1016/j.neulet.2022.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Resveratrol, a natural polyphenolic compound, reportedly possesses numerous biological activities, including anti-inflammatory and antioxidant effects. In the current study, we examined (1) the dilator effects of resveratrol on retinal arterioles, (2) the protective effects of resveratrol against excitotoxic retinal injury, and (3) whether these effects are mediated by the AMP-activated kinase (AMPK)-dependent pathway in rats. Male Wistar rats (7 to 10 weeks old) were used in this study. The diameters of the retinal arterioles, mean arterial pressure, and heart rate were measured in vivo. The retinal injury was assessed by histological examination. Intravenous injection of resveratrol (3 mg/kg) increased the diameter of the retinal arterioles without affecting the mean arterial pressure and heart rate. The AMPK inhibitor, compound C (5 mg/kg, intravenously), significantly attenuated the retinal vasodilator response to resveratrol. Seven days after intravitreal injection of N-methyl-d-aspartic acid (NMDA; 25, 50, and 100 nmol/eye), the number of cells located in the ganglion cell layer (GCL) was reduced, along with thinning of the inner plexiform layer. Intravitreal resveratrol injection (100 nmol/eye) reduced the NMDA (25 and 50 nmol/eye)-induced cell loss in the GCL. The neuroprotective effect of resveratrol was significantly but not completely reversed by compound C (10 nmol/eye). These results suggest that resveratrol dilates retinal arterioles and protects against NMDA-induced retinal neurodegeneration via an AMPK-dependent pathway in rats. Resveratrol may have the potential to slow the onset and progression of diseases associated with retinal ischemia by improving impaired retinal circulation and protecting retinal neuronal cells.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuna Ezawa
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiki Kanamori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
12
|
Mechanism of metformin regulation in central nervous system: Progression and future perspectives. Biomed Pharmacother 2022; 156:113686. [DOI: 10.1016/j.biopha.2022.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
|
13
|
Xie E, Nadeem U, Xie B, D’Souza M, Sulakhe D, Skondra D. Using Computational Drug-Gene Analysis to Identify Novel Therapeutic Candidates for Retinal Neuroprotection. Int J Mol Sci 2022; 23:ijms232012648. [PMID: 36293505 PMCID: PMC9604082 DOI: 10.3390/ijms232012648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Retinal cell death is responsible for irreversible vision loss in many retinal disorders. No commercially approved treatments are currently available to attenuate retinal cell loss and preserve vision. We seek to identify chemicals/drugs with thoroughly-studied biological functions that possess neuroprotective effects in the retina using a computational bioinformatics approach. We queried the National Center for Biotechnology Information (NCBI) to identify genes associated with retinal neuroprotection. Enrichment analysis was performed using ToppGene to identify compounds related to the identified genes. This analysis constructs a Pharmacome from multiple drug-gene interaction databases to predict compounds with statistically significant associations to genes involved in retinal neuroprotection. Compounds with known deleterious effects (e.g., asbestos, ethanol) or with no clinical indications (e.g., paraquat, ozone) were manually filtered. We identified numerous drug/chemical classes associated to multiple genes implicated in retinal neuroprotection using a systematic computational approach. Anti-diabetics, lipid-lowering medicines, and antioxidants are among the treatments anticipated by this analysis, and many of these drugs could be readily repurposed for retinal neuroprotection. Our technique serves as an unbiased tool that can be utilized in the future to lead focused preclinical and clinical investigations for complex processes such as neuroprotection, as well as a wide range of other ocular pathologies.
Collapse
Affiliation(s)
- Edward Xie
- Chicago Medical School at Rosalind, Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Mark D’Souza
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dinanath Sulakhe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| |
Collapse
|
14
|
Liu S, Tian H, Niu Y, Yu C, Xie L, Jin Z, Niu W, Ren J, Fu L, Yao Z. Combined cell grafting and VPA administration facilitates neural repair through axonal regeneration and synaptogenesis in traumatic brain injury. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1289-1300. [PMID: 36148950 PMCID: PMC9828309 DOI: 10.3724/abbs.2022123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuronal regeneration and functional recovery are severely compromised following traumatic brain injury (TBI). Treatment options, including cell transplantation and drug therapy, have been shown to benefit TBI, although the underlying mechanisms remain elusive. In this study, neural stem cells (NSCs) are transplanted into TBI-challenged mice, together with olfactory ensheathing cells (OECs) or followed by valproic acid (VPA) treatment. Both OEC grafting and VPA treatment facilitate the differentiation of NSCs into neurons (including endogenous and exogenous neurons) and significantly attenuate neurological functional defects in TBI mice. Combination of NSCs with OECs or VPA administration leads to overt improvement in axonal regeneration, synaptogenesis, and synaptic plasticity in the cerebral cortex in TBI-challenged mice, as shown by retrograde corticospinal tract tracing, electron microscopy, growth-associated protein 43 (GAP43), and synaptophysin (SYN) analyses. However, these beneficial effects of VPA are reversed by local delivery of N-methyl-D-aspartate (NMDA) into tissues surrounding the injury epicenter in the cerebral cortex, accompanied by a pronounced drop in axons and synapses in the brain. Our findings reveal that increased axonal regeneration and synaptogenesis evoked by cell grafting and VPA fosters neural repair in a murine model of TBI. Moreover, VPA-induced neuroprotective roles are antagonized by exogenous NMDA administration and its concomitant decrease in the number of neurons of local brain, indicating that increased neurons induced by VPA treatment mediate axonal regeneration and synaptogenesis in mice after TBI operation. Collectively, this study provides new insights into NSC transplantation therapy for TBI.
Collapse
Affiliation(s)
- Sujuan Liu
- Department of Anatomy and EmbryologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Haili Tian
- School of KinesiologyShanghai University of SportShanghai200438China
| | - Yanmei Niu
- Department of RehabilitationSchool of Medical TechnologyTianjin Medical UniversityTianjin300070China
| | - Chunxia Yu
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Lingjian Xie
- Department of Physiology and PathophysiologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Zhe Jin
- Tianjin Yaohua Binhai SchoolTianjin300000China
| | - Wenyan Niu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of ImmunologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai Institute of Cardiovascular DiseasesShanghai200032China,Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA,Correspondence address. Tel: +86-22-83336819; (Z.Y.) / Tel: +86-22-83336107; (L.F.) / Tel: +86-21-64041990; (J.R.) @
| | - Li Fu
- Department of RehabilitationSchool of Medical TechnologyTianjin Medical UniversityTianjin300070China,Department of Physiology and PathophysiologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China,Correspondence address. Tel: +86-22-83336819; (Z.Y.) / Tel: +86-22-83336107; (L.F.) / Tel: +86-21-64041990; (J.R.) @
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of ImmunologySchool of Basic Medical ScienceTianjin Medical UniversityTianjin300070China,Correspondence address. Tel: +86-22-83336819; (Z.Y.) / Tel: +86-22-83336107; (L.F.) / Tel: +86-21-64041990; (J.R.) @
| |
Collapse
|
15
|
Joachim SC. Towards an Understanding of Retinal Diseases and Novel Treatment. Int J Mol Sci 2022; 23:ijms23147576. [PMID: 35886925 PMCID: PMC9317684 DOI: 10.3390/ijms23147576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| |
Collapse
|
16
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
18
|
Liu HL, Hu FY, Xu P, Wu JH. Regulation of mitophagy by metformin improves the structure and function of retinal ganglion cells following excitotoxicity-induced retinal injury. Exp Eye Res 2022; 217:108979. [DOI: 10.1016/j.exer.2022.108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
|
19
|
Buist M, Fuss D, Rastegar M. Transcriptional Regulation of MECP2E1-E2 Isoforms and BDNF by Metformin and Simvastatin through Analyzing Nascent RNA Synthesis in a Human Brain Cell Line. Biomolecules 2021; 11:biom11081253. [PMID: 34439919 PMCID: PMC8391797 DOI: 10.3390/biom11081253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is the main DNA methyl-binding protein in the brain that binds to 5-methylcytosine and 5-hydroxymethyl cytosine. MECP2 gene mutations are the main origin of Rett Syndrome (RTT), a neurodevelopmental disorder in young females. The disease has no existing cure, however, metabolic drugs such as metformin and statins have recently emerged as potential therapeutic candidates. In addition, induced MECP2-BDNF homeostasis regulation has been suggested as a therapy avenue. Here, we analyzed nascent RNA synthesis versus steady state total cellular RNA to study the transcriptional effects of metformin (an anti-diabetic drug) on MECP2 isoforms (E1 and E2) and BNDF in a human brain cell line. Additionally, we investigated the impact of simvastatin (a cholesterol lowering drug) on transcriptional regulation of MECP2E1/E2-BDNF. Metformin was capable of post-transcriptionally inducing BDNF and/or MECP2E1, while transcriptionally inhibiting MECP2E2. In contrast simvastatin significantly inhibited BDNF transcription without significantly impacting MECP2E2 transcripts. Further analysis of ribosomal RNA transcripts confirmed that the drug neither individually nor in combination affected these fundamentally important transcripts. Experimental analysis was completed in conditions of the presence or absence of serum starvation that showed minimal impact for serum deprival, although significant inhibition of steady state MECP2E1 by simvastatin was only detected in non-serum starved cells. Taken together, our results suggest that metformin controls MECP2E1/E2-BDNF transcriptionally and/or post-transcriptionally, and that simvastatin is a potent transcriptional inhibitor of BDNF. The transcriptional effect of these drugs on MECP2E1/E2-BDNF were not additive under these tested conditions, however, either drug may have potential application for related disorders.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Correspondence: ; Tel.: +1-(204)-272-3108; Fax: +1-(204)-789-3900
| |
Collapse
|