1
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Wang J, Ran Y, Li Z, Zhao T, Zhang F, Wang J, Liu Z, Chen X. Salsolinol as an RNA m6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy. Neural Regen Res 2025; 20:887-899. [PMID: 38886960 PMCID: PMC11433901 DOI: 10.4103/nrr.nrr-d-23-01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00032/figure1/v/2024-06-17T092413Z/r/image-tiff Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Sal) is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an environmental toxin that causes Parkinson's disease. However, the mechanism by which Sal mediates dopaminergic neuronal death remains unclear. In this study, we found that Sal significantly enhanced the global level of N6-methyladenosine (m6A) RNA methylation in PC12 cells, mainly by inducing the downregulation of the expression of m6A demethylases fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5). RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway. The m6A reader YTH domain-containing family protein 2 (YTHDF2) promoted the degradation of m6A-containing Yes-associated protein 1 (YAP1) mRNA, which is a downstream key effector in the Hippo signaling pathway. Additionally, downregulation of YAP1 promoted autophagy, indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity. These findings reveal the role of Sal on m6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy. Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Juan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
3
|
Kanarik M, Liiver K, Norden M, Teino I, Org T, Laugus K, Shimmo R, Karelson M, Saarma M, Harro J. RNA m 6A methyltransferase activator affects anxiety-related behaviours, monoamines and striatal gene expression in the rat. Acta Neuropsychiatr 2024:1-16. [PMID: 39380240 DOI: 10.1017/neu.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Modification of mRNA by methylation is involved in post-transcriptional regulation of gene expression by affecting the splicing, transport, stability and translation of mRNA. Methylation of adenosine at N6 (m6A) is one of the most common and important cellular modification occurring in the mRNA of eukaryotes. Evidence that m6A mRNA methylation is involved in regulation of stress response and that its dysregulation may contribute to the pathogenesis of neuropsychiatric disorders is accumulating. We have examined the acute and subchronic (up to 18 days once per day intraperitoneally) effect of the first METTL3/METTL14 activator compound CHMA1004 (methyl-piperazine-2-carboxylate) at two doses (1 and 5 mg/kg) in male and female rats. CHMA1004 had a locomotor activating and anxiolytic-like profile in open field and elevated zero-maze tests. In female rats sucrose consumption and swimming in Porsolt's test were increased. Nevertheless, CHMA1004 did not exhibit strong psychostimulant-like properties: CHMA1004 had no effect on 50-kHz ultrasonic vocalizations except that it reduced the baseline difference between male and female animals, and acute drug treatment had no effect on extracellular dopamine levels in striatum. Subchronic CHMA1004 altered ex vivo catecholamine levels in several brain regions. RNA sequencing of female rat striata after subchronic CHMA1004 treatment revealed changes in the expression of a number of genes linked to dopamine neuron viability, neurodegeneration, depression, anxiety and stress response. Conclusively, the first-in-class METTL3/METTL14 activator compound CHMA1004 increased locomotor activity and elicited anxiolytic-like effects after systemic administration, demonstrating that pharmacological activation of RNA m6A methylation has potential for neuropsychiatric drug development.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Marianna Norden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Indrek Teino
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Tartumaa, Estonia
| | - Tõnis Org
- Institute of Genomics, University of Tartu, Tartu, Tartumaa, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Mati Karelson
- Division of Molecular Technology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
4
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
6
|
Harrahill NJ, Hadden MK. Small molecules that regulate the N 6-methyladenosine RNA modification as potential anti-cancer agents. Eur J Med Chem 2024; 274:116526. [PMID: 38805939 DOI: 10.1016/j.ejmech.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Epitranscriptomics, the field of post-translational RNA modifications, is a burgeoning domain of research that has recently received significant attention for its role in multiple diseases, including cancer. N6-methyladenosine (m6A) is the most prominent post-translational RNA modification and plays a critical role in RNA transcription, processing, translation, and metabolism. The m6A modification is controlled by three protein classes known as writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). Each class of m6A regulatory proteins has been implicated in cancer initiation and progression. As such, many of these proteins have been identified as potential targets for anti-cancer chemotherapeutics. In this work, we provide an overview of the role m6A-regulating proteins play in cancer and discuss the current state of small molecule therapeutics targeting these proteins.
Collapse
Affiliation(s)
- Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States.
| |
Collapse
|
7
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
8
|
Xu J, Ren Z, Niu T, Li S. Mechanism of Fat Mass and Obesity-Related Gene-Mediated Heme Oxygenase-1 m6A Modification in the Recovery of Neurological Function in Mice with Spinal Cord Injury. Orthop Surg 2024; 16:1175-1186. [PMID: 38514911 PMCID: PMC11062882 DOI: 10.1111/os.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES This study examined the mechanism of fat mass and obesity-related gene (FTO)-mediated heme oxygenase-1 (HO-1) m6A modification facilitating neurological recovery in spinal cord injury (SCI) mice. FTO/HO-1 was identified as a key regulator of SCI as well as a potential target for treatment of SCI. METHODS An SCI mouse was treated with pcDNA3.1-FTO/pcDNA3.1-NC/Dac51. An oxygen/glucose deprivation (OGD) cell model simulated SCI, with cells treated with pcDNA3.1-FTO/si-HO-1/Dac51. Motor function and neurobehavioral evaluation were assessed using the Basso, Beattie, and Bresnahan (BBB) scale and modified neurological severity score (mNSS). Spinal cord pathology and neuronal apoptosis were assessed. Further, FTO/HO-1 mRNA and protein levels, HO-1 mRNA stability, the interaction of YTHDF2 with HO-1 mRNA, neuronal viability/apoptosis, and HO-1 m6A modification were evaluated. RESULTS Spinal cord injury mice exhibited reduced BBB, elevated mNSS scores, disorganized spinal cord cells, scattered nuclei, and severe nucleus pyknosis. pcDNA3.1-FTO elevated FTO mRNA, protein expression, and BBB score; reduced the mNSS score of SCI mice; decreased neuronal apoptosis; improved the cell arrangement; and improved nucleus pyknosis in spinal cord tissues. OGD decreased FTO expression. FTO upregulation ameliorated OGD-induced neuronal apoptosis. pcDNA3.1-FTO reduced HO-1 mRNA and protein and HO-1 m6A modification, while increasing HO-1 mRNA stability and FTO in OGD-treated cells. FTO upregulated HO-1 by modulating m6A modification. HO-1 downregulation attenuated the effect of FTO. pcDNA3.1-FTO/Dac51 increased the HO-1 m6A level in mouse spinal cord tissue homogenate, reduced BBB, boosted mNSS scores of SCI mice, aggravated nucleus pyknosis, and increased neuronal apoptosis in spinal cord tissues, confirming that FTO mediated HO-1 m6A modification facilitated neurological recovery in SCI mice. CONCLUSION The fat mass and obesity-related gene modulates HO-1 mRNA stability by regulating m6A modification levels, thereby influencing HO-1 expression and promoting neurological recovery in SCI mice.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| | - Zhenxiao Ren
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| | - Tianzuo Niu
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| | - Siyuan Li
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology)GuangzhouChina
| |
Collapse
|
9
|
Lee SM, Koo B, Carré C, Fischer A, He C, Kumar A, Liu K, Meyer KD, Ming GL, Peng J, Roignant JY, Storkebaum E, Sun S, De Pietri Tonelli D, Wang Y, Weng YL, Pulvirenti L, Shi Y, Yoon KJ, Song H. Exploring the brain epitranscriptome: perspectives from the NSAS summit. Front Neurosci 2023; 17:1291446. [PMID: 37928731 PMCID: PMC10625424 DOI: 10.3389/fnins.2023.1291446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Increasing evidence reinforces the essential function of RNA modifications in development and diseases, especially in the nervous system. RNA modifications impact various processes in the brain, including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural regeneration, neurodegeneration, and brain tumorigenesis, leading to the emergence of a new field termed neuroepitranscriptomics. Deficiency in machineries modulating RNA modifications has been implicated in a range of brain disorders from microcephaly, intellectual disability, seizures, and psychiatric disorders to brain cancers such as glioblastoma. The inaugural NSAS Challenge Workshop on Brain Epitranscriptomics hosted in Crans-Montana, Switzerland in 2023 assembled a group of experts from the field, to discuss the current state of the field and provide novel translational perspectives. A summary of the discussions at the workshop is presented here to simulate broader engagement from the general neuroscience field.
Collapse
Affiliation(s)
- Sung-Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bonsang Koo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, United States
| | - Ajeet Kumar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kathy Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, TN, United States
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Danny Thomas Place, Memphis, TN, United States
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Staudingerweg, Germany
| | - Erik Storkebaum
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA, United States
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States
| | | | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
11
|
Wang D, Zheng T, Zhou S, Liu M, Liu Y, Gu X, Mao S, Yu B. Promoting axon regeneration by inhibiting RNA N6-methyladenosine demethylase ALKBH5. eLife 2023; 12:e85309. [PMID: 37535403 PMCID: PMC10400074 DOI: 10.7554/elife.85309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
A key limiting factor of successful axon regeneration is the intrinsic regenerative ability in both the peripheral nervous system (PNS) and central nervous system (CNS). Previous studies have identified intrinsic regenerative ability regulators that act on gene expression in injured neurons. However, it is less known whether RNA modifications play a role in this process. Here, we systematically screened the functions of all common m6A modification-related enzymes in axon regeneration and report ALKBH5, an evolutionarily conserved RNA m6A demethylase, as a regulator of axonal regeneration in rodents. In PNS, knockdown of ALKBH5 enhanced sensory axonal regeneration, whereas overexpressing ALKBH5 impaired axonal regeneration in an m6A-dependent manner. Mechanistically, ALKBH5 increased the stability of Lpin2 mRNA and thus limited regenerative growth associated lipid metabolism in dorsal root ganglion neurons. Moreover, in CNS, knockdown of ALKBH5 enhanced the survival and axonal regeneration of retinal ganglion cells after optic nerve injury. Together, our results suggest a novel mechanism regulating axon regeneration and point ALKBH5 as a potential target for promoting axon regeneration in both PNS and CNS.
Collapse
Affiliation(s)
- Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Tiemei Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Mingwen Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
12
|
Wan X, Ge Y, Xu S, Feng Y, Zhu Y, Yin L, Pu Y, Liang G. m 6A modification and its role in neural development and neurological diseases. Epigenomics 2023; 15:819-833. [PMID: 37718929 DOI: 10.2217/epi-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
N6-methyladenosine (m6A) methylation, the most prevalent post-transcriptional modification in eukaryotes, represents a highly dynamic and reversible process that is regulated by m6A methyltransferases, m6A demethylases and RNA-binding proteins during RNA metabolism, which affects RNA function. Notably, m6A modification is significantly enriched in the brain and exerts regulatory roles in neurogenesis and neurodevelopment through various mechanisms, further influencing the occurrence and progression of neurological disorders. This study systematically summarizes and discusses the latest findings on common m6A regulators, examining their expression, function and mechanisms in neurodevelopment and neurological diseases. Additionally, we explore the potential of m6A modification in diagnosing and treating neurological disorders, aiming to provide new insights into the molecular mechanisms and potential therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yanlu Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
13
|
Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother 2023; 162:114583. [PMID: 36989722 DOI: 10.1016/j.biopha.2023.114583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous mRNA modification in eukaryotes. m6A occurs through the action of methyltransferases, demethylases, and methylation-binding proteins. m6A methylation of RNA is associated with various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, cerebral apoplexy, brain injury, epilepsy, cerebral arteriovenous malformations, and glioma. Furthermore, recent studies report that m6A-related drugs have attracted considerable concerns in the therapeutic areas of neurological disorders. Here, we mainly summarized the role of m6A modification in neurological diseases and the therapeutic potential of m6A-related drugs. The aim of this review is expected to be useful to systematically assess m6A as a new potential biomarker and develop innovative modulators of m6A for the amelioration and treatment of neurological disorders.
Collapse
Affiliation(s)
- Junya Lv
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Lijuan Xing
- Precision Laboratory of Panjin Central Hospital, Panjin 124000, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| | - Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| |
Collapse
|
14
|
Sikorski V, Selberg S, Lalowski M, Karelson M, Kankuri E. The structure and function of YTHDF epitranscriptomic m 6A readers. Trends Pharmacol Sci 2023; 44:335-353. [PMID: 37069041 DOI: 10.1016/j.tips.2023.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Specific RNA sequences modified by a methylated adenosine, N6-methyladenosine (m6A), contribute to the post-transcriptional regulation of gene expression. The quantity of m6A in RNA is orchestrated by enzymes that write and erase it, while its effects are mediated by proteins that bind to read this modification. Dysfunction of this post-transcriptional regulatory process has been linked to human disease. Although the initial focus has been on pharmacological targeting of the writer and eraser enzymes, interest in the reader proteins has been challenged by a lack of clear understanding of their functional roles and molecular mechanisms of action. Readers of m6A-modified RNA (m6A-RNA) - the YTH (YT521-B homology) domain-containing protein family paralogs 1-3 (YTHDF1-3, referred to here as DF1-DF3) - are emerging as therapeutic targets as their links to pathological processes such as cancer and inflammation and their roles in regulating m6A-RNA fate become clear. We provide an updated understanding of the modes of action of DF1-DF3 and review their structures to unlock insights into drug design approaches for DF paralog-selective inhibition.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland
| | - Simona Selberg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland.
| |
Collapse
|
15
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
16
|
You S, Su X, Ying J, Li S, Qu Y, Mu D. Research Progress on the Role of RNA m6A Modification in Glial Cells in the Regulation of Neurological Diseases. Biomolecules 2022; 12:biom12081158. [PMID: 36009052 PMCID: PMC9405963 DOI: 10.3390/biom12081158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells are the most abundant and widely distributed cells that maintain cerebral homeostasis in the central nervous system. They mainly include microglia, astrocytes, and the oligodendrocyte lineage cells. Moreover, glial cells may induce pathological changes, such as inflammatory responses, demyelination, and disruption of the blood–brain barrier, to regulate the occurrence and development of neurological diseases through various molecular mechanisms. Furthermore, RNA m6A modifications are involved in various pathological processes associated with glial cells. In this review, the roles of glial cells in physiological and pathological states, as well as advances in understanding the mechanisms by which glial cells regulate neurological diseases under RNA m6A modification, are summarized, hoping to provide new perspectives on the deeper mechanisms and potential therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Siyi You
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
17
|
Zhang F, Ran Y, Tahir M, Li Z, Wang J, Chen X. Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke. Front Cell Neurosci 2022; 16:955222. [PMID: 35990887 PMCID: PMC9386152 DOI: 10.3389/fncel.2022.955222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcription modification, widely occurring in eukaryotic mRNA and non-coding RNA. m6A modification is highly enriched in the mammalian brain and is associated with neurological diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Ischemic stroke (IS) was discovered to alter the cerebral m6A epi-transcriptome, which might have functional implications in post-stroke pathophysiology. Moreover, it is observed that m6A modification could regulate microglia’s pro-inflammatory and anti-inflammatory responses. Given the critical regulatory role of microglia in the inflammatory processes in the central nervous system (CNS), we speculate that m6A modification could modulate the post-stroke microglial inflammatory responses. This review summarizes the vital regulatory roles of m6A modification in microglia-mediated inflammation and IS. Stroke is associated with a high recurrence rate, understanding the relationship between m6A modification and stroke may help stroke rehabilitation and develop novel therapies in the future.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Muhammad Tahir
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Xuechai Chen,
| |
Collapse
|
18
|
Reis AL, Hammond JH, Stevanovski I, Arnold JC, McGregor IS, Deveson IW, Gururajan A. Sex-specific transcriptomic and epitranscriptomic signatures of PTSD-like fear acquisition. iScience 2022; 25:104861. [PMID: 36039298 PMCID: PMC9418440 DOI: 10.1016/j.isci.2022.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the molecular pathology of posttraumatic stress disorder (PTSD) is evolving due to advances in sequencing technologies. With the recent emergence of Oxford Nanopore direct RNA-seq (dRNA-seq), it is now also possible to interrogate diverse RNA modifications, collectively known as the “epitranscriptome.”. Here, we present our analyses of the male and female mouse amygdala transcriptome and epitranscriptome, obtained using parallel Illumina RNA-seq and Oxford Nanopore dRNA-seq, associated with the acquisition of PTSD-like fear induced by Pavlovian cued-fear conditioning. We report significant sex-specific differences in the amygdala transcriptional response during fear acquisition and a range of shared and dimorphic epitranscriptomic signatures. Differential RNA modifications are enriched among mRNA transcripts associated with neurotransmitter regulation and mitochondrial function, many of which have been previously implicated in PTSD. Very few differentially modified transcripts are also differentially expressed, suggesting an influential, expression-independent role for epitranscriptional regulation in PTSD-like fear acquisition. PTSD-like trauma has sexually dimorphic effects on the amygdala transcriptome Most RNA modifications identified adhere to the known patterns associated with m6A There was enrichment of RNA modifications in neurological/PTSD-related genes There was little overlap between transcriptomic and epitranscriptomic signatures
Collapse
|
19
|
Recent Advances of m6A Demethylases Inhibitors and Their Biological Functions in Human Diseases. Int J Mol Sci 2022; 23:ijms23105815. [PMID: 35628623 PMCID: PMC9144293 DOI: 10.3390/ijms23105815] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is a post-transcriptional RNA modification and one of the most abundant types of RNA chemical modifications. m6A functions as a molecular switch and is involved in a range of biomedical aspects, including cardiovascular diseases, the central nervous system, and cancers. Conceptually, m6A methylation can be dynamically and reversibly modulated by RNA methylation regulatory proteins, resulting in diverse fates of mRNAs. This review focuses on m6A demethylases fat-mass- and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), which especially erase m6A modification from target mRNAs. Recent advances have highlighted that FTO and ALKBH5 play an oncogenic role in various cancers, such as acute myeloid leukemias (AML), glioblastoma, and breast cancer. Moreover, studies in vitro and in mouse models confirmed that FTO-specific inhibitors exhibited anti-tumor effects in several cancers. Accumulating evidence has suggested the possibility of FTO and ALKBH5 as therapeutic targets for specific diseases. In this review, we aim to illustrate the structural properties of these two m6A demethylases and the development of their specific inhibitors. Additionally, this review will summarize the biological functions of these two m6A demethylases in various types of cancers and other human diseases.
Collapse
|
20
|
Zhang N, Ding C, Zuo Y, Peng Y, Zuo L. N6-methyladenosine and Neurological Diseases. Mol Neurobiol 2022; 59:1925-1937. [PMID: 35032318 DOI: 10.1007/s12035-022-02739-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) is a dynamic reversible methylation modification of the adenosine N6 position and is the most common chemical epigenetic modification among mRNA post-transcriptional modifications, including methylation, demethylation, and recognition. Post-transcriptional modification involves multiple protein molecules, including METTL3, METTL14, WTAP, KIAA1429, ALKBH5, YTHDF1/2/3, and YTHDC1/2. m6A-related proteins are expressed in almost all cells. However, the abnormal expression of m6A-related proteins may occur in the nervous system, thereby affecting neuritogenesis, brain volume, learning and memory, memory formation and consolidation, etc., and is implicated in the development of diseases, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, depression, epilepsy, and brain tumors. This review focuses on the functions of m6A in the development of central nervous system diseases, thus contributing to a deeper understanding of disease pathogenesis and providing potential clinical therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Chunhong Ding
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yuxin Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yu Peng
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Lielian Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
21
|
Wang Q, Liang Y, Luo X, Liu Y, Zhang X, Gao L. N6-methyladenosine RNA modification: A promising regulator in central nervous system injury. Exp Neurol 2021; 345:113829. [PMID: 34339678 DOI: 10.1016/j.expneurol.2021.113829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022]
Abstract
In addition to DNA methylation, reversible epigenetic modification occurring in RNA has been discovered recently. The most abundant type of RNA methylation is N6-methyladenosine (m6A) modification, which is dynamically regulated by methylases ("writers"), demethylases ("erasers") and m6A-binding proteins ("readers"). As an essential posttranscriptional regulator, m6A can control mRNA splicing, processing, stability, export and translation. Recent studies have revealed that m6A modification has the strongest tissue specificity for brain tissue and plays crucial roles in central nervous system (CNS) injures by affecting its downstream target genes or non-coding RNAs. This review focuses on the expression and function of m6A regulatory proteins in CNS trauma in vitro and in vivo. We also highlight the latest insights into the molecular mechanisms of pathological damage in the CNS. Understanding m6A dynamics, functions, and machinery will yield an opportunity for designing and developing novel therapeutic agents for CNS injuries.
Collapse
Affiliation(s)
- Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuqing Liu
- Laboratory of Metabolomics and Gynecological Disease Research, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaoli Zhang
- Laboratory of Metabolomics and Gynecological Disease Research, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
22
|
Gaggi G, Di Credico A, Izzicupo P, Iannetti G, Di Baldassarre A, Ghinassi B. Chemical and Biological Molecules Involved in Differentiation, Maturation, and Survival of Dopaminergic Neurons in Health and Parkinson's Disease: Physiological Aspects and Clinical Implications. Biomedicines 2021; 9:biomedicines9070754. [PMID: 34209807 PMCID: PMC8301385 DOI: 10.3390/biomedicines9070754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disease characterized by a specific and progressive loss of dopaminergic (DA) neurons and dopamine, causing motor dysfunctions and impaired movements. Unfortunately, available therapies can partially treat the motor symptoms, but they have no effect on non-motor features. In addition, the therapeutic effect reduces gradually, and the prolonged use of drugs leads to a significative increase in the number of adverse events. For these reasons, an alternative approach that allows the replacement or the improved survival of DA neurons is very appealing for the treatment of PD patients and recently the first human clinical trials for DA neurons replacement have been set up. Here, we review the role of chemical and biological molecules that are involved in the development, survival and differentiation of DA neurons. In particular, we review the chemical small molecules used to differentiate different type of stem cells into DA neurons with high efficiency; the role of microRNAs and long non-coding RNAs both in DA neurons development/survival as far as in the pathogenesis of PD; and, finally, we dissect the potential role of exosomes carrying biological molecules as treatment of PD.
Collapse
Affiliation(s)
- Giulia Gaggi
- Beth Israel Deaconess Medical Center, Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Andrea Di Credico
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
| | - Pascal Izzicupo
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
| | | | - Angela Di Baldassarre
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
- Correspondence:
| | - Barbara Ghinassi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (P.I.); (B.G.)
| |
Collapse
|
23
|
Sikorski V, Karjalainen P, Blokhina D, Oksaharju K, Khan J, Katayama S, Rajala H, Suihko S, Tuohinen S, Teittinen K, Nummi A, Nykänen A, Eskin A, Stark C, Biancari F, Kiss J, Simpanen J, Ropponen J, Lemström K, Savinainen K, Lalowski M, Kaarne M, Jormalainen M, Elomaa O, Koivisto P, Raivio P, Bäckström P, Dahlbacka S, Syrjälä S, Vainikka T, Vähäsilta T, Tuncbag N, Karelson M, Mervaala E, Juvonen T, Laine M, Laurikka J, Vento A, Kankuri E. Epitranscriptomics of Ischemic Heart Disease-The IHD-EPITRAN Study Design and Objectives. Int J Mol Sci 2021; 22:6630. [PMID: 34205699 PMCID: PMC8235045 DOI: 10.3390/ijms22126630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Pasi Karjalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Daria Blokhina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Kati Oksaharju
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jahangir Khan
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | | | - Helena Rajala
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Satu Suihko
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Suvi Tuohinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kari Teittinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Annu Nummi
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Antti Nykänen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Arda Eskin
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, 06800 Ankara, Turkey;
| | - Christoffer Stark
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Fausto Biancari
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Heart Center, Turku University Hospital and Department of Surgery, University of Turku, 20521 Turku, Finland
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Jan Kiss
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jarmo Simpanen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jussi Ropponen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Karl Lemström
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kimmo Savinainen
- Clinical Biobank Tampere, Tampere University Hospital, 33520 Tampere, Finland;
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Biomedical Proteomics, 61-704 Poznan, Poland
| | - Markku Kaarne
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Mikko Jormalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Outi Elomaa
- Folkhälsan Research Center, 00250 Helsinki, Finland; (S.K.); (O.E.)
| | - Pertti Koivisto
- Chemistry Unit, Finnish Food Authority, 00790 Helsinki, Finland;
| | - Peter Raivio
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Pia Bäckström
- Helsinki Biobank, Hospital District of Helsinki and Uusimaa, 00029 Helsinki, Finland;
| | - Sebastian Dahlbacka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Simo Syrjälä
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tiina Vainikka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tommi Vähäsilta
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, 34450 Istanbul, Turkey;
- School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia;
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Mika Laine
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jari Laurikka
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| |
Collapse
|