1
|
Wu X, Zhu L, Sun X, Xia M, Zhao S, Zhang B, Xia T. A novel risk stratification approach and molecular subgroup characterization based on coagulation related genes in colon adenocarcinoma. Cancer Cell Int 2024; 24:309. [PMID: 39252019 PMCID: PMC11386116 DOI: 10.1186/s12935-024-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Colon adenocarcinoma (COAD) represents a significant health concern within the population. Advancing our understanding of COAD is imperative for early detection, enabling personalized treatment interventions, and facilitating the development of effective preventive measures. The coagulation system plays a role in tumor-related pathological processes; however, its specific involvement in COAD and potential contributors remain unclear. This study aimed to establish a novel risk stratification approach by analyzing coagulation related genes (CRGs) associated with COAD. Through a comprehensive bioinformatics analysis of data from public databases, we screened COAD associated CRGs and characterized the associated molecular subtypes. After a comprehensive analysis of the characteristics of each subtype, we applied differentially expressed genes in CRG subtypes to establish a new risk stratification method. Clinical subgroup analysis, immunoinfiltration analysis, therapeutic reactivity prediction and other analytical methods suggest the potential clinical value of the established risk stratification method. As one of the selected targets, the effect of MS4A4A on the proliferation and invasion of COAD was confirmed by in vitro experiments, which partially verified the reliability of bioinformatics results. Our findings delineate CRGs potentially implicated in COAD pathogenesis and offer fresh insights into the influence of the coagulation process on tumorigenesis and progression.
Collapse
Affiliation(s)
- Xiangxin Wu
- Department of Abdominal Surgery, Ganzhou Cancer Hospital, Ganzhou, China
| | - Lichong Zhu
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Xizhe Sun
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Anatskaya OV, Vinogradov AE. Polyploidy Promotes Hypertranscription, Apoptosis Resistance, and Ciliogenesis in Cancer Cells and Mesenchymal Stem Cells of Various Origins: Comparative Transcriptome In Silico Study. Int J Mol Sci 2024; 25:4185. [PMID: 38673782 PMCID: PMC11050069 DOI: 10.3390/ijms25084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
3
|
Geng S, Yu X, Yu S. Efficacy and safety of natural killer cells injection combined with XELOX chemotherapy in postoperative patients with stage III colorectal cancer in China: a prospective randomised controlled clinical trial study protocol. BMJ Open 2024; 14:e080377. [PMID: 38531576 PMCID: PMC10966825 DOI: 10.1136/bmjopen-2023-080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in China. However, resistance to multiple chemotherapeutics after surgery leads to failure of the main therapy to CRC. Natural killer (NK) cells are innate cytotoxic lymphocytes that exhibit strong cytotoxic activity against tumour cells. NK cell-based therapy, either alone or in combination with chemotherapy, has achieved favourable results and holds promise for addressing recurrence and metastasis in CRC patients after surgery. METHODS AND ANALYSIS This is a prospective, randomised controlled clinical trial to evaluate efficacy and safety of interleukin 2 activated NK cells injection combined with XELOX (capecitabine plus oxaliplatin)-based chemotherapy for postoperative CRC patients. Participants will be randomly divided into treatment group and control group, and every group includes 40 patients. The treatment group will also receive NK cells (5×109) with+XELOX-based chemotherapy, while the control group will receive only XELOX-based chemotherapy. This treatment will be repeated for eight cycles (6 months). The follow-up period lasts about 3 years, during which CEA, CA19-9, CA125, enhancement CT and colonoscopy will be conducted. The primary endpoints of this study are progression-free survival and overall survival, while the secondary endpoint is safety (number and severity of adverse events). Additionally, we aim to identify cancer stem cells in peripheral blood and predictive biomarkers (cytokines secreted by NK cells and activated markers of NK cells) that indicate patients who achieve an effective response. ETHICS AND DISSEMINATION The study has been approved by the Clinical Research Ethics Committee of our hospital (approval number 2023LLSC006) and the Chinese Clinical Trials. It will be conducted in accordance with the Declaration of Helsinki. Written informed consent will be obtained from all participants. The study findings will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER Chinese Clinical Trials Registry (ChiCTR2300075861).
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, The People's Hospital of Dazu Chongqing, Chongqing, China
| | - Xingrui Yu
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Shaohong Yu
- Department of General Surgery, The People's Hospital of Dazu Chongqing, Chongqing, China
| |
Collapse
|
4
|
Abbas ZN, Al-Saffar AZ, Jasim SM, Sulaiman GM. Comparative analysis between 2D and 3D colorectal cancer culture models for insights into cellular morphological and transcriptomic variations. Sci Rep 2023; 13:18380. [PMID: 37884554 PMCID: PMC10603139 DOI: 10.1038/s41598-023-45144-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Drug development is a time-consuming and expensive process, given the low success rate of clinical trials. Now, anticancer drug developments have shifted to three-dimensional (3D) models which are more likely to mimic tumor behavior compared to traditional two-dimensional (2D) cultures. A comparative study among different aspects was conducted between 2D and 3D cultures using colorectal cancer (CRC) cell lines, in addition, Formalin-Fixed Paraffin-Embedded (FFPE) block samples of patients with CRC were used for evaluation. Compared to the 2D culture, cells grown in 3D displayed significant (p < 0.01) differences in the pattern of cell proliferation over time, cell death phase profile, expression of tumorgenicity-related genes, and responsiveness to 5-fluorouracil, cisplatin, and doxorubicin. Epigenetically, 3D cultures and FFPE shared the same methylation pattern and microRNA expression, while 2D cells showed elevation in methylation rate and altered microRNA expression. Lastly, transcriptomic study depending on RNA sequencing and thorough bioinformatic analyses showed significant (p-adj < 0.05) dissimilarity in gene expression profile between 2D and 3D cultures involving thousands of genes (up/down-regulated) of multiple pathways for each cell line. Taken together, the study provides insights into variations in cellular morphologies between cells cultured in 2D and 3D models.
Collapse
Affiliation(s)
- Zaid Nsaif Abbas
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq.
| | - Saba Mahdi Jasim
- Oncology Teaching Hospital, Medical City, Ministry of Health, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| |
Collapse
|
5
|
Dayhoff GW, Uversky VN. Rapid prediction and analysis of protein intrinsic disorder. Protein Sci 2022; 31:e4496. [PMID: 36334049 PMCID: PMC9679974 DOI: 10.1002/pro.4496] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Protein intrinsic disorder is found in all kingdoms of life and is known to underpin numerous physiological and pathological processes. Computational methods play an important role in characterizing and identifying intrinsically disordered proteins and protein regions. Herein, we present a new high-efficiency web-based disorder predictor named Rapid Intrinsic Disorder Analysis Online (RIDAO) that is designed to facilitate the application of protein intrinsic disorder analysis in genome-scale structural bioinformatics and comparative genomics/proteomics. RIDAO integrates six established disorder predictors into a single, unified platform that reproduces the results of individual predictors with near-perfect fidelity. To demonstrate the potential applications, we construct a test set containing more than one million sequences from one hundred organisms comprising over 420 million residues. Using this test set, we compare the efficiency and accessibility (i.e., ease of use) of RIDAO to five well-known and popular disorder predictors, namely: AUCpreD, IUPred3, metapredict V2, flDPnn, and SPOT-Disorder2. We show that RIDAO yields per-residue predictions at a rate two to six orders of magnitude greater than the other predictors and completely processes the test set in under an hour. RIDAO can be accessed free of charge at https://ridao.app.
Collapse
Affiliation(s)
- Guy W. Dayhoff
- Department of ChemistryUniversity of South FloridaTampaFloridaUSA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research InstituteUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
6
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
7
|
Cancer Stem Cells and Their Vesicles, Together with Other Stem and Non-Stem Cells, Govern Critical Cancer Processes: Perspectives for Medical Development. Int J Mol Sci 2022; 23:ijms23020625. [PMID: 35054811 PMCID: PMC8775347 DOI: 10.3390/ijms23020625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Stem cells, identified several decades ago, started to attract interest at the end of the nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs, were found to participate in the therapy of many diseases. In cancer, however, stem cells of high importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs), which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs, participate in processes of key importance, specific to cancer: generation of distinct cell subtypes, proliferation, differentiation, progression, formation of metastases, immune and therapy resistance, cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells, especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to collaborative cancer transition/integration processes. Therapy developments are mentioned as ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both industrial development and future treatments. The latter will be administered to specific patients together with known drugs, with the aim of eradicating their tumor growth and metastases.
Collapse
|