1
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
2
|
Pathoor NN, Ganesh PS. Unveiling the nexus: Long non-coding RNAs and the PI3K/Akt pathway in oral squamous cell carcinoma. Pathol Res Pract 2024; 262:155540. [PMID: 39142241 DOI: 10.1016/j.prp.2024.155540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
The PI3K/Akt pathway plays a critical role in the progression and treatment of oral squamous cell carcinoma (OSCC). Recent research has uncovered the involvement of long non-coding RNAs (lncRNAs) in regulating this pathway, influencing OSCC cell proliferation, survival, and metastasis. This review explores the latest findings on how certain lncRNAs act as either cancer promoters or cancer inhibitors within the PI3K/Akt signaling pathway. Certain lncRNAs act as oncogenic or tumor-suppressive agents, making them potential diagnostic and prognostic markers. Targeting these lncRNAs may lead to novel therapeutic strategies. The evolving fields of precision medicine and artificial intelligence promise advancements in OSCC diagnosis and treatment, enabling more personalized and effective patient care.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu 600077, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
3
|
Lan T, Yan Y, Zheng D, Ding L. Investigating diagnostic potential of long non-coding RNAs in head and neck squamous cell carcinoma using TCGA database and clinical specimens. Sci Rep 2024; 14:7500. [PMID: 38553620 PMCID: PMC10980800 DOI: 10.1038/s41598-024-57987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/24/2024] [Indexed: 04/02/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent and prognostically challenging cancer worldwide. The role of long non-coding RNAs (lncRNAs) in cancer regulation is progressively being understood. This study aims to identify lncRNAs with diagnostic potential as biomarkers for HNSCC. Statistical analysis was performed on expression data from the Cancer Genome Atlas (TCGA) database to identify potential lncRNAs associated with HNSCC. Four selected lncRNAs were validated using real-time quantitative reverse transcription polymerase chain reaction and correlated with clinical factors. Functional roles were further investigated. A total of 488 differentially expressed lncRNAs were identified in TCGA-HNSC. After rigorous evaluation based on p-values, survival analysis, and ROC analysis, 24 lncRNAs were prioritized for additional investigation. LINC00460, LINC00941, CTC-241F20.4, and RP11-357H14.17 were established as candidate diagnostic biomarkers. These lncRNAs exhibited elevated expression in HNSCC tissues and were associated with poor prognosis. Combining them showed high diagnostic accuracy. Notably, LINC00460 and CTC-241F20.4 demonstrated a significant elevation in the advanced stages of HNSCC. We constructed an lncRNA-mRNA regulatory network, and the array of significant regulatory pathways identified included focal adhesion, regulation of epithelial cell migration, and others. Additionally, these lncRNAs were found to influence immune responses by modulating immune cell infiltration in the HNSCC microenvironment. Our research indicates that LINC00460, LINC00941, RP11-357H14.17, and CTC-241F20.4 may have diagnostic and prognostic importance in HNSCC. Furthermore, we have gained insights into their potential functional roles, particularly about immune responses and interactions in the microenvironment.
Collapse
Affiliation(s)
- Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, Fujian, China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, Fujian, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, 88 Jiao Tong Road, Fuzhou, 350004, Fujian, China.
| | - Lincan Ding
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
4
|
Abdelwhab A, Alaa El-Din Y, Sabry D, Aggour RL. The Effects of Umbilical Cord Mesenchymal Stem Cells -Derived Exosomes in Oral Squamous Cell Carcinoma (In vitro Study). Asian Pac J Cancer Prev 2023; 24:2531-2542. [PMID: 37505788 PMCID: PMC10676480 DOI: 10.31557/apjcp.2023.24.7.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) derived exosomes offers several advantages as a cell-free therapeutic agents. In this study, Umbilical cord mesenchymal stem cells exosomes (UC-MSCs-exos) effects on oral squamous cell carcinoma (OSCC) cell line was evaluated. METHODS UC-MSCs-exos were isolated and co-cultured with OSCC cells and their impact on OSCC was explored by various tests. Comet assay and western blot for cleaved caspase-3 and immunocytochemistry for caspase-8 were used for apoptosis assessment. HO-1 and Nrf2 were used to determine antioxidant levels. Tumor necrosis factor-α and interleukin-6 were assessed as inflammatory biomarkers. HOX transcript antisense intergenic long noncoding RNA (HOTAIR) expression was also evaluated. RESULTS In a dose-dependent manner, UC-MSCs-exos reduced the levels of pro-inflammatory cytokines (IL-6 and TNF-α) and induced apoptosis of OSCC in vitro. Meanwhile, we found that UC-MSCs-exos downregulate HOTAIR. CONCLUSION UC-MSCs-exos conferred a suppressive role on OSCC in vitro, highlighting a promising therapeutic role. However, the exact potentially involved molecules and molecular mechanisms need to be investigated in further studies.
Collapse
Affiliation(s)
- Amira Abdelwhab
- Lecturer of Oral Medicine, Diagnosis and Periodontology, Faculty of Dentistry, October 6 University, Cairo, Egypt.
| | - Yasmine Alaa El-Din
- Lecturer of Oral and Maxillofacial Pathology, Faculty of Dentistry, October 6 University, Cairo, Egypt.
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt.
- Department of Medical Biochemistry, Faculty of Medicine, Badr University in Cairo, Egypt.
| | - Reham Lotfy Aggour
- Lecturer of Oral Medicine, Diagnosis and Periodontology, Faculty of Dentistry, October 6 University, Cairo, Egypt.
| |
Collapse
|
5
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022; 15:100333. [PMID: 35774196 PMCID: PMC9237953 DOI: 10.1016/j.mtbio.2022.100333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xueying Wen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| |
Collapse
|
7
|
Evaluation of the Prognostic Value of Long Noncoding RNAs in Lung Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9273628. [PMID: 35069738 PMCID: PMC8776467 DOI: 10.1155/2022/9273628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is the most common type of lung cancer accounting for 40% to 51%. Long noncoding RNAs (lncRNAs) have been reported to play a significant role in the invasion, migration, and proliferation of lung cancer tissue cells. However, systematic identification of lncRNA signatures and evaluation of the prognostic value for LUSC are still an urgent problem. In this work, LUSC RNA-seq data were collected from TCGA database, and the limma R package was used to screen differentially expressed lncRNAs (DElncRNAs). In total, 216 DElncRNAs were identified between the LUSC and normal samples. lncRNAs associated with prognosis were calculated using univariate Cox regression analysis. The overall survival (OS) prognostic model containing 10 lncRNAs and the disease-free survival (DFS) prognostic model consisting of 11 lncRNAs were constructed using a machine learning-based algorithm, systematic LASSO-Cox regression analysis. We found that the survival rate of samples in the high-risk group was lower than that in the low-risk group. Results of ROC curves showed that both the OS and DFS risk score had better prognostic effects than the clinical characteristics, including age, stage, gender, and TNM. Two lncRNAs (LINC00519 and FAM83A-AS1) that were commonly identified as prognostic factors in both models could be further investigated for their clinical significance and therapeutic value. In conclusion, we constructed lncRNA prognostic models with considerable prognostic effect for both OS and DFS of LUSC.
Collapse
|
8
|
Mishra MK, Gupta S, Shivangi, Sehgal S. Assessing Long Non-coding RNAs in Tobacco-associated Oral Cancer. Curr Cancer Drug Targets 2022; 22:879-888. [PMID: 35747968 DOI: 10.2174/1568009622666220623115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer is one of the compelling and pegged diseases battled by clinicians and researchers worldwide. Among different types of cancer, oral cancer holds the sixth position globally. With an escalating prevalence in Asian countries, India, China, and Pakistan constitute a large proportion of total incidents of oral cancer patients in terms of new cases or deaths. This mounting prevalence is ascribed to poor oral hygiene and rampant use of substances earmarked as potential risk factors for the disease. Risk factors (dietary/lifestyle habits/occupational/environmental) trigger the activation of oncogenes, dysregulation of lncRNA and miRNA, and silence the tumor suppressor genes, which robustly contributes to the onset and progression of tumorigenesis in oral squamous cell carcinoma. Evidence suggests that specific carcinogens identified in tobacco and related products alter many cellular pathways predisposing to advanced stages of oral cancer. Long non-coding RNAs represent a broad group of heterogenous transcripts longer than 200 nucleotides which do not translate to form functional proteins. They regulate various cellular pathways by specifically interacting with other RNAs, DNA, and proteins. Their role in the pathogenesis of OSCC and other cancer is still being debated. In this review, we discuss the molecular insights of significant lncRNAs involved in some crucial deregulated pathways of tobacco-associated OSCC. The implications and challenges to harnessing the potential of lncRNAs as biomarkers in early diagnosis and targeted treatment have also been analyzed.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| | - Sachin Gupta
- Department of ENT and Head & Neck Surgery, Acharya Shri Chander College of Medical Sciences and Hospital (ASCOMS), Jammu (J&K), India
| | - Shivangi
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| | - Shelly Sehgal
- Centre for Molecular Biology, Central University of Jammu, Jammu (J&K), India
| |
Collapse
|
9
|
He Y, Wang W, Jiang P, Yang L, Guo Q, Xiang J, Gao Y, Wang Y, Chen R. Long Non-Coding RNAs in Oral Submucous Fibrosis: Their Functional Mechanisms and Recent Research Progress. J Inflamm Res 2021; 14:5787-5800. [PMID: 34764671 PMCID: PMC8578048 DOI: 10.2147/jir.s337014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown that most genomes are transcribed into non-coding RNAs (ncRNAs), including microRNAs (miRs) and long non-coding RNAs (lncRNAs), which can affect different cell characteristics. LncRNAs are long heterologous RNAs that regulate gene expression and various signaling pathways during homeostasis and development. Studies have shown that a lncRNA is an important regulatory molecule that can be targeted to change the physiology and function of cells. Expression or dysfunction of lncRNAs is closely related to various genetic, autoimmune, and metabolic diseases. The importance of ncRNAs in oral submucosal fibrosis (OSF) has garnered much attention in recent years. However, most research has focused on miRs. The role of these molecules in OSF is incompletely understood. This review focuses on the emerging role and function of lncRNAs in OSF as novel regulators. Finally, the potential functional role of lncRNAs as biomarkers for OSF diagnosis is also described. LncRNAs are expected to become a new therapeutic target, but more research is needed to understand their biological functions more deeply.
Collapse
Affiliation(s)
- Yaodong He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Wei Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Pingping Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, 230032, People's Republic of China
| | - Lin Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Qi Guo
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Junwei Xiang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuling Gao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui Province, 230032, People's Republic of China
| |
Collapse
|