1
|
Liu Y, Liu J, Peng N, Hai S, Zhang S, Zhao H, Liu W. Role of non-canonical post-translational modifications in gastrointestinal tumors. Cancer Cell Int 2023; 23:225. [PMID: 37777749 PMCID: PMC10544213 DOI: 10.1186/s12935-023-03062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins contribute to the occurrence and development of tumors. Previous studies have suggested that canonical PTMs such as ubiquitination, glycosylation, and phosphorylation are closely implicated in different aspects of gastrointestinal tumors. Recently, emerging evidence showed that non-canonical PTMs play an essential role in the carcinogenesis, metastasis and treatment of gastrointestinal tumors. Therefore, we summarized recent advances in sumoylation, neddylation, isoprenylation, succinylation and other non-canonical PTMs in gastrointestinal tumors, which comprehensively describe the mechanisms and functions of non-classical PTMs in gastrointestinal tumors. It is anticipated that targeting specific PTMs could benefit the treatment as well as improve the prognosis of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Wang Z, Liu J, Yang T, Wang Q, Liang R, Tang J. Circ_0082182 upregulates the NFIB level via sponging miR-326 to promote oxaliplatin resistance and malignant progression of colorectal cancer cells. Mol Cell Biochem 2022; 478:1045-1057. [PMID: 36219357 DOI: 10.1007/s11010-022-04551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
Circular RNAs (circRNAs) are key regulators in tumor metastasis and drug resistance. This study was designed to investigate circ_0082182 function and mechanism in oxaliplatin (OXA) resistance and cancer progression of colorectal cancer (CRC). The circ_0082182, microRNA-326 (miR-326), and nuclear factor I B (NFIB) levels were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell sensitization was analyzed by Cell Counting Kit-8 assay. The proliferation ability was determined via EdU assay, and apoptosis was measured by flow cytometry. Transwell assay and wound healing assay were performed to assess cell invasion and migration. The protein level was examined through Western blot. The binding interaction was conducted via dual-luciferase reporter assay. Xenograft tumor assay was used to explore the circ_0082182 function in vivo. The circ_0082182 level was upregulated in OXA-resistant CRC samples and cells. Downregulation of circ_0082182 suppressed OXA resistance, proliferation, invasion, and migration but promoted apoptosis of OXA-resistant CRC cells. Circ_0082182 acted as a sponge for miR-326. The regulatory role of circ_0082182 was ascribed to the miR-326 sponging function. MiR-326 directly targeted NFIB to impede OXA resistance and cancer progression in CRC cells. NFIB level was regulated by circ_0082182 via sponging miR-326. Circ_0082182 promoted tumor growth in OXA-resistant xenograft tumor model through mediating the miR-326/NFIB axis. These data suggested that circ_0082182 elevated the NFIB expression to regulate OXA resistance and CRC progression by absorbing miR-326.
Collapse
Affiliation(s)
- Zhifeng Wang
- Department of Digestive Endoscopy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Jingmei Liu
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tao Yang
- Department of Gastroenterology, Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, Sichuan, China
| | - Qinqin Wang
- Department of Normal Surgical, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Rong Liang
- Department of Digestive Endoscopy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Jinliang Tang
- Department of Gastroenterology, Jincheng People's Hospital, No. 456, Wenchang East Street, Jincheng, 048000, Shanxi, China.
| |
Collapse
|
3
|
High Dual Expression of the Biomarkers CD44v6/α2β1 and CD44v6/PD-L1 Indicate Early Recurrence after Colorectal Hepatic Metastasectomy. Cancers (Basel) 2022; 14:cancers14081939. [PMID: 35454846 PMCID: PMC9027562 DOI: 10.3390/cancers14081939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Considering the biology of CRC, distant metastases might support the identification of high-risk patients for early recurrence and targeted therapy. Expression of a panel of druggable, metastasis-related biomarkers was immunohistochemically analyzed in 53 liver (LM) and 15 lung metastases (LuM) and correlated with survival. Differential expression between LM and LuM was observed for the growth factor receptors IGF1R (LuM 92.3% vs. LM 75.8%, p = 0.013), EGFR (LuM 68% vs. LM 41.5%, p = 0.004), the cell adhesion molecules CD44v6 (LuM 55.7% vs. LM 34.9%, p = 0.019) and α2β1 (LuM 88.3% vs. LM 58.5%, p = 0.001) and the check point molecule PD-L1 (LuM 6.1% vs. LM 3.3%, p = 0.005). Contrary, expression of HGFR, Hsp90, Muc1, Her2/neu, ERα and PR was comparable in LuM and LM. In the LM cohort (n = 52), a high CD44v6 expression was identified as an independent factor of poor prognosis (PFS: HR 2.37, 95% CI 1.18-4.78, p = 0.016). High co-expression of CD44v6/α2β1 (HR 4.14, 95% CI 1.65-10.38, p = 0.002) and CD44v6/PD-L1 (HR 2.88, 95% CI 1.21-6.85, p = 0.017) indicated early recurrence after hepatectomy, in a substantial number of patients (CD44v6/α2β1: 11 (21.15%) patients; CD44v6/PD-L1: 12 (23.1%) patients). Dual expression of druggable protein biomarkers may refine prognostic prediction and stratify high-risk patients for new therapeutic concepts, depending on the metastatic location.
Collapse
|
4
|
Ben Arfi K, Schneider C, Bennasroune A, Bouland N, Wolak-Thierry A, Collin G, Le CC, Toussaint K, Hachet C, Lehrter V, Dedieu S, Bouché O, Morjani H, Boulagnon-Rombi C, Appert-Collin A. Discoidin Domain Receptor 1 Expression in Colon Cancer: Roles and Prognosis Impact. Cancers (Basel) 2022; 14:928. [PMID: 35205677 PMCID: PMC8869771 DOI: 10.3390/cancers14040928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix components such as collagens are deposited within the tumor microenvironment at primary and metastatic sites and are recognized to be critical during tumor progression and metastasis development. This study aimed to evaluate the clinical and prognostic impact of Discoidin Domain Receptor 1 (DDR1) expression in colon cancers and its association with a particular molecular and/or morphological profile and to evaluate its potential role as a prognosis biomarker. Immunohistochemical expression of DDR1 was evaluated on 292 colonic adenocarcinomas. DDR1 was highly expressed in 240 (82.2%) adenocarcinomas. High DDR1 immunostaining score was significantly associated, on univariate analysis, with male sex, left tumor location, BRAF wild type status, KRAS mutated status, and Annexin A10 negativity. High DDR1 immunohistochemical expression was associated with shorter event free survival only. Laser capture microdissection analyses revealed that DDR1 mRNA expression was mainly attributable to adenocarcinoma compared to stromal cells. The impact of DDR1 expression on cell invasion was then evaluated by modified Boyden chamber assay using cell types with distinct mutational profiles. The invasion capacity of colon adenocarcinoma is supported by DDR1 expression. Thus, our results showed that DDR1 was highly expressed in most colon adenocarcinomas and appears as an indicator of worse event free survival.
Collapse
Affiliation(s)
- Kaouther Ben Arfi
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire de Reims, 51090 Reims, France; (K.B.A.); (C.B.-R.)
| | - Christophe Schneider
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
| | - Amar Bennasroune
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
| | - Nicole Bouland
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
- Laboratoire d’Anatomie Pathologique, Faculté de Médecine, 51100 Reims, France
| | - Aurore Wolak-Thierry
- Unité d’Aide Méthodologique, Centre Hospitalier Universitaire, 51100 Reims, France;
| | - Guillaume Collin
- Unité BioSpecT, EA7506, Université de Reims Champagne Ardenne (URCA), 51096 Reims, France; (G.C.); (V.L.); (O.B.); (H.M.)
| | - Cuong Cao Le
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
| | - Kevin Toussaint
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
| | - Cathy Hachet
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
| | - Véronique Lehrter
- Unité BioSpecT, EA7506, Université de Reims Champagne Ardenne (URCA), 51096 Reims, France; (G.C.); (V.L.); (O.B.); (H.M.)
| | - Stéphane Dedieu
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
| | - Olivier Bouché
- Unité BioSpecT, EA7506, Université de Reims Champagne Ardenne (URCA), 51096 Reims, France; (G.C.); (V.L.); (O.B.); (H.M.)
- Service d’Hépato-Gastroentérologie, Centre Hospitalier Universitaire, 51100 Reims, France
| | - Hamid Morjani
- Unité BioSpecT, EA7506, Université de Reims Champagne Ardenne (URCA), 51096 Reims, France; (G.C.); (V.L.); (O.B.); (H.M.)
| | - Camille Boulagnon-Rombi
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire de Reims, 51090 Reims, France; (K.B.A.); (C.B.-R.)
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
- Laboratoire d’Anatomie Pathologique, Faculté de Médecine, 51100 Reims, France
| | - Aline Appert-Collin
- UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51097 Reims, France; (C.S.); (A.B.); (N.B.); (C.C.L.); (K.T.); (C.H.); (S.D.)
| |
Collapse
|
5
|
Nwabo Kamdje AH, Seke Etet PF, Kipanyula MJ, Vecchio L, Tagne Simo R, Njamnshi AK, Lukong KE, Mimche PN. Insulin-like growth factor-1 signaling in the tumor microenvironment: Carcinogenesis, cancer drug resistance, and therapeutic potential. Front Endocrinol (Lausanne) 2022; 13:927390. [PMID: 36017326 PMCID: PMC9395641 DOI: 10.3389/fendo.2022.927390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment fuels tumorigenesis and induces the development of resistance to anticancer drugs. A growing number of reports support that the tumor microenvironment mediates these deleterious effects partly by overexpressing insulin-like growth factor 1 (IGF-1). IGF-1 is known for its role to support cancer progression and metastasis through the promotion of neovascularization in transforming tissues, and the promotion of the proliferation, maintenance and migration of malignant cells. Anti-IGF therapies showed potent anticancer effects and the ability to suppress cancer resistance to various chemotherapy drugs in in vivo and in vitro preclinical studies. However, high toxicity and resistance to these agents are increasingly being reported in clinical trials. We review data supporting the notion that tumor microenvironment mediates tumorigenesis partly through IGF-1 signaling pathway. We also discuss the therapeutic potential of IGF-1 receptor targeting, with special emphasis on the ability of IGF-R silencing to overcome chemotherapy drug resistance, as well as the challenges for clinical use of anti-IGF-1R therapies.
Collapse
Affiliation(s)
- Armel H. Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
- *Correspondence: Armel H. Nwabo Kamdje,
| | - Paul F. Seke Etet
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon
- Neuroscience Lab, Faculty of Medicine and Biomedical Medicine, The University of Yaoundé l and Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Maulilio J. Kipanyula
- Department of Veterinary Anatomy and Pathology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Lorella Vecchio
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | - Alfred K. Njamnshi
- Neuroscience Lab, Faculty of Medicine and Biomedical Medicine, The University of Yaoundé l and Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Kiven E. Lukong
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patrice N. Mimche
- Division of Microbiology and Immunology, Department of Pathology, Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
6
|
Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P, Leal-Rojas P. CRISPR/Cas13-Based Platforms for a Potential Next-Generation Diagnosis of Colorectal Cancer through Exosomes Micro-RNA Detection: A Review. Cancers (Basel) 2021; 13:4640. [PMID: 34572866 PMCID: PMC8466426 DOI: 10.3390/cancers13184640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer with the second highest mortality rate worldwide. CRC is a heterogenous disease with multiple risk factors associated, including obesity, smoking, and use of alcohol. Of total CRC cases, 60% are diagnosed in late stages, where survival can drop to about 10%. CRC screening programs are based primarily on colonoscopy, yet this approach is invasive and has low patient adherence. Therefore, there is a strong incentive for developing molecular-based methods that are minimally invasive and have higher patient adherence. Recent reports have highlighted the importance of extracellular vesicles (EVs), specifically exosomes, as intercellular communication vehicles with a broad cargo, including micro-RNAs (miRNAs). These have been syndicated as robust candidates for diagnosis, primarily for their known activities in cancer cells, including immunoevasion, tumor progression, and angiogenesis, whereas miRNAs are dysregulated by cancer cells and delivered by cancer-derived exosomes (CEx). Quantitative polymerase chain reaction (qPCR) has shown good results detecting specific cancer-derived exosome micro-RNAs (CEx-miRNAs) associated with CRC, but qPCR also has several challenges, including portability and sensitivity/specificity issues regarding experiment design and sample quality. CRISPR/Cas-based platforms have been presented as cost-effective, ultrasensitive, specific, and robust clinical detection tools in the presence of potential inhibitors and capable of delivering quantitative and qualitative real-time data for enhanced decision-making to healthcare teams. Thereby, CRISPR/Cas13-based technologies have become a potential strategy for early CRC diagnosis detecting CEx-miRNAs. Moreover, CRISPR/Cas13-based platforms' ease of use, scalability, and portability also showcase them as a potential point-of-care (POC) technology for CRC early diagnosis. This study presents two potential CRISPR/Cas13-based methodologies with a proposed panel consisting of four CEx-miRNAs, including miR-126, miR-1290, miR-23a, and miR-940, to streamline novel applications which may deliver a potential early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Benjamín Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Karla Araya-Castro
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Innovation and Entrepreneurship Institute (iDEAUFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Juan Calderón
- Center for Genetics and Genomics, School of Medicine, Institute of Science and Innovation in Medicine (ICIM), Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Luis Vergara
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Cell and Applied Molecular Biology, Universidad de La Frontera, Temuco 4780000, Chile
| | - Helga Weber
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Javier Retamales
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago 8320000, Chile;
| | - Paulina Araya-Castro
- School of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Pamela Leal-Rojas
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|