1
|
Padhi AK, Maurya S. Uncovering the secrets of resistance: An introduction to computational methods in infectious disease research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:173-220. [PMID: 38448135 DOI: 10.1016/bs.apcsb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Antimicrobial resistance (AMR) is a growing global concern with significant implications for infectious disease control and therapeutics development. This chapter presents a comprehensive overview of computational methods in the study of AMR. We explore the prevalence and statistics of AMR, underscoring its alarming impact on public health. The role of AMR in infectious disease outbreaks and its impact on therapeutics development are discussed, emphasizing the need for novel strategies. Resistance mutations are pivotal in AMR, enabling pathogens to evade antimicrobial treatments. We delve into their importance and contribution to the spread of AMR. Experimental methods for quantitatively evaluating resistance mutations are described, along with their limitations. To address these challenges, computational methods provide promising solutions. We highlight the advantages of computational approaches, including rapid analysis of large datasets and prediction of resistance profiles. A comprehensive overview of computational methods for studying AMR is presented, encompassing genomics, proteomics, structural bioinformatics, network analysis, and machine learning algorithms. The strengths and limitations of each method are briefly outlined. Additionally, we introduce ResScan-design, our own computational method, which employs a protein (re)design protocol to identify potential resistance mutations and adaptation signatures in pathogens. Case studies are discussed to showcase the application of ResScan in elucidating hotspot residues, understanding underlying mechanisms, and guiding the design of effective therapies. In conclusion, we emphasize the value of computational methods in understanding and combating AMR. Integration of experimental and computational approaches can expedite the discovery of innovative antimicrobial treatments and mitigate the threat posed by AMR.
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Yu Z, Shi X, Wang Z. Structures and Efflux Mechanisms of the AcrAB-TolC Pump. Subcell Biochem 2024; 104:1-16. [PMID: 38963480 DOI: 10.1007/978-3-031-58843-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.
Collapse
Affiliation(s)
- Zhili Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Canè C, Casciaro B, Di Somma A, Loffredo MR, Puglisi E, Battaglia G, Mellini M, Cappiello F, Rampioni G, Leoni L, Amoresano A, Duilio A, Mangoni ML. The antimicrobial peptide Esc(1-21)-1c increases susceptibility of Pseudomonas aeruginosa to conventional antibiotics by decreasing the expression of the MexAB-OprM efflux pump. Front Chem 2023; 11:1271153. [PMID: 37942400 PMCID: PMC10628714 DOI: 10.3389/fchem.2023.1271153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: The increase in bacterial strains resistant to conventional antibiotics is an alarming problem for human health and could lead to pandemics in the future. Among bacterial pathogens responsible for a large variety of severe infections there is Pseudomonas aeruginosa. Therefore, there is an urgent need for new molecules with antimicrobial activity or that can act as adjuvants of antibiotics already in use. In this scenario, antimicrobial peptides (AMPs) hold great promise. Recently, we characterized a frog-skin AMP derived from esculentin-1a, namely Esc(1-21)-1c, endowed with antipseudomonal activity without being cytotoxic to human cells. Methods: The combinatorial effect of the peptide and antibiotics was investigated through the checkerboard assay, differential proteomic and transcriptional analysis. Results: Here, we found that Esc(1-21)-1c can synergistically inhibit the growth of P. aeruginosa cells with three different antibiotics, including tetracycline. We therefore investigated the underlying mechanism implemented by the peptide using a differential proteomic approach. The data revealed a significant decrease in the production of three proteins belonging to the MexAB-OprM efflux pump upon treatment with sub-inhibitory concentration of Esc(1-21)-1c. Down-regulation of these proteins was confirmed by transcriptional analysis and direct measurement of their relative levels in bacterial cells by tandem mass spectrometry analysis in multiple reaction monitoring scan mode. Conclusion: These evidences suggest that treatment with Esc(1-21)-1c in combination with antibiotics would increase the intracellular drug content making bacteria more susceptible to the antibiotic. Overall, these results highlight the importance of characterizing new molecules able to synergize with conventional antibiotics, paving the way for the development of alternative therapeutic strategies based on AMP/antibiotic formulations to counteract the emergence of resistant bacterial strains and increase the use of "old" antibiotics in medical practice.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Puglisi
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gennaro Battaglia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marta Mellini
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University “Roma Tre”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Zhang X, Zhu Y, Gao Y, Li W, Wang Y, Li Y. Evaluation and analysis of multidrug resistance- and hypervirulence-associated genes in carbapenem-resistant Pseudomonas aeruginosa strains among children in an area of China for five consecutive years. Front Microbiol 2023; 14:1280012. [PMID: 37901827 PMCID: PMC10602738 DOI: 10.3389/fmicb.2023.1280012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a growing threat. It is urgent to investigate the multidrug resistance and high virulence of CRPA to provide a basis for infection control and rational use of antibiotics. Methods A retrospective study of 56 nonduplicated CRPA isolates was conducted. Results CRPA mainly came from the intensive care unit (ICU) and was mostly isolated from sputum samples. The carbapenem resistance rates of P. aeruginosa were 21.37% (2016), 10.62, 5.88, 10 and 13.87% from 2016 to 2020, respectively. Carbapenem-resistant enzymes and aminoglycoside-modifying enzyme-encoding genes were detected in all isolates, and extended-spectrum β-lactamase and cephalosporin enzyme-encoding genes were present in 96.43 and 80.38% of isolates, respectively. The detection rate of OprM showed a statistically significant difference (p < 0.05) between the ICU and other wards. Genes related to biofilms, membrane channel proteins, I integrons and efflux systems were detected in all isolates, with detection rates greater than 90%. CRPA was strongly virulent, and over 80% of isolates carried hypervirulence-associated genes (exoU, exoS, exoT, and exoY). The drug resistance rates of cefepime and piperacillin/tazobactam showed a statistically significant difference (p < 0.05) between strains with exoU (+) and exoU (-) (p < 0.05). Notably, out of the 7 individuals who died, 4 had extensively drug-resistant P. aeruginosa (57.14%). Discussion The detection rates of various resistance and virulence genes were high, and the coexistence phenomenon was serious. In clinical practice, antibiotics should be used reasonably based on different drug resistance genes to ensure the rationality and safety of patient medication.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Clinical Laboratory, Children’s Hospital of Soochow University, Suzhou, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
- Clinical Medical College of Pediatrics, Soochow University, Suzhou, Jiangsu, China
| | - Yunfen Zhu
- Department of Clinical Laboratory, Children’s Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Gao
- Department of Clinical Laboratory, Children’s Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Department of Clinical Laboratory, Children’s Hospital of Soochow University, Suzhou, China
| | - Yunzhong Wang
- Department of Clinical Laboratory, Children’s Hospital of Soochow University, Suzhou, China
- Clinical Medical College of Pediatrics, Soochow University, Suzhou, Jiangsu, China
| | - Yang Li
- Department of Clinical Laboratory, Children’s Hospital of Soochow University, Suzhou, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
- Clinical Medical College of Pediatrics, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Gervasoni S, Mehla J, Bergen CR, Leus IV, Margiotta E, Malloci G, Bosin A, Vargiu AV, Lomovskaya O, Rybenkov VV, Ruggerone P, Zgurskaya HI. Molecular determinants of avoidance and inhibition of Pseudomonas aeruginosa MexB efflux pump. mBio 2023; 14:e0140323. [PMID: 37493633 PMCID: PMC10470492 DOI: 10.1128/mbio.01403-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/27/2023] Open
Abstract
Transporters of the resistance-nodulation-cell division (RND) superfamily of proteins are the dominant multidrug efflux power of Gram-negative bacteria. The major RND efflux pump of Pseudomonas aeruginosa is MexAB-OprM, in which the inner membrane transporter MexB is responsible for the recognition and binding of compounds. The high importance of this pump in clinical antibiotic resistance made it a subject of intense investigations and a promising target for the discovery of efflux pump inhibitors. This study is focused on a series of peptidomimetic compounds developed as effective inhibitors of MexAB-OprM. We performed multi-copy molecular dynamics simulations, machine-learning (ML) analyses, and site-directed mutagenesis of MexB to investigate interactions of MexB with representatives of efflux avoiders, substrates, and inhibitors. The analysis of both direct and water-mediated protein-ligand interactions revealed characteristic patterns for each class, highlighting significant differences between them. We found that efflux avoiders poorly interact with the access binding site of MexB, and inhibition engages amino acid residues that are not directly involved in binding and transport of substrates. In agreement, machine-learning models selected different residues predictive of MexB substrates and inhibitors. The differences in interactions were further validated by site-directed mutagenesis. We conclude that the substrate translocation and inhibition pathways of MexB split at the interface (between the main putative binding sites) and at the deep binding pocket and that interactions outside of the hydrophobic patch contribute to the inhibition of MexB. This molecular-level information could help in the rational design of new inhibitors and antibiotics less susceptible to the efflux mechanism. IMPORTANCE Multidrug transporters recognize and expel from cells a broad range of ligands including their own inhibitors. The difference between the substrate translocation and inhibition routes remains unclear. In this study, machine learning and computational and experimental approaches were used to understand dynamics of MexB interactions with its ligands. Our results show that some ligands engage a certain combination of polar and charged residues in MexB binding sites to be effectively expelled into the exit funnel, whereas others engage aromatic and hydrophobic residues that slow down or hinder the next step in the transporter cycle. These findings suggest that all MexB ligands fit into this substrate-inhibitor spectrum depending on their physico-chemical structures and properties.
Collapse
Affiliation(s)
- Silvia Gervasoni
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Charles R. Bergen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Inga V. Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Enrico Margiotta
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Monserrato, Italy
| | | | | | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
6
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
7
|
Membrane Proteins: Structure, Function and Motion. Int J Mol Sci 2022; 24:ijms24010468. [PMID: 36613912 PMCID: PMC9820270 DOI: 10.3390/ijms24010468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Cell membranes are intricate multicomponent supramolecular structures, with a complex variable morphology and chemical composition [...].
Collapse
|
8
|
Olivença F, Ferreira C, Nunes A, Silveiro C, Pimentel M, Gomes JP, Catalão MJ. Identification of drivers of mycobacterial resistance to peptidoglycan synthesis inhibitors. Front Microbiol 2022; 13:985871. [PMID: 36147841 PMCID: PMC9485614 DOI: 10.3389/fmicb.2022.985871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Beta-lactams have been excluded from tuberculosis therapy due to the intrinsic resistance of Mycobacterium tuberculosis (Mtb) to this antibiotic class, usually attributed to a potent beta-lactamase, BlaC, and to an unusually complex cell wall. In this pathogen, the peptidoglycan is cross-linked by penicillin-binding proteins (PBPs) and L,D-transpeptidases, the latter resistant to inhibition by most beta-lactams. However, recent studies have shown encouraging results of beta-lactam/beta-lactamase inhibitor combinations in clinical strains. Additional research on the mechanisms of action and resistance to these antibiotics and other inhibitors of peptidoglycan synthesis, such as the glycopeptides, is crucial to ascertain their place in alternative regimens against drug-resistant strains. Within this scope, we applied selective pressure to generate mutants resistant to amoxicillin, meropenem or vancomycin in Mtb H37Rv or Mycolicibacterium smegmatis (Msm) mc2-155. These were phenotypically characterized, and whole-genome sequencing was performed. Mutations in promising targets or orthologue genes were inspected in Mtb clinical strains to establish potential associations between altered susceptibility to beta-lactams and the presence of key genomic signatures. The obtained isolates had substantial increases in the minimum inhibitory concentration of the selection antibiotic, and beta-lactam cross-resistance was detected in Mtb. Mutations in L,D-transpeptidases and major PBPs, canonical targets, or BlaC were not found. The transcriptional regulator PhoP (Rv0757) emerged as a common denominator for Mtb resistance to both amoxicillin and meropenem, while Rv2864c, a lipoprotein with PBP activity, appears to be specifically involved in decreased susceptibility to the carbapenem. Nonetheless, the mutational pattern detected in meropenem-resistant mutants was different from the yielded by amoxicillin-or vancomycin-selected isolates, suggesting that distinct pathways may participate in increased resistance to peptidoglycan inhibitors, including at the level of beta-lactam subclasses. Cross-resistance between beta-lactams and antimycobacterials was mostly unnoticed, and Msm meropenem-resistant mutants from parental strains with previous resistance to isoniazid or ethambutol were isolated at a lower frequency. Although cell-associated nitrocefin hydrolysis was increased in some of the isolates, our findings suggest that traditional assumptions of Mtb resistance relying largely in beta-lactamase activity and impaired access of hydrophilic molecules through lipid-rich outer layers should be challenged. Moreover, the therapeutical potential of the identified Mtb targets should be explored.
Collapse
Affiliation(s)
- Francisco Olivença
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Ferreira
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Nunes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Cátia Silveiro
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Pimentel
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Maria João Catalão
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|