1
|
Kesić M, Baković P, Farkaš V, Bagarić R, Kolarić D, Štefulj J, Čičin-Šain L. Constitutive Serotonin Tone as a Modulator of Brown Adipose Tissue Thermogenesis: A Rat Study. Life (Basel) 2023; 13:1436. [PMID: 37511811 PMCID: PMC10381595 DOI: 10.3390/life13071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Brown adipose tissue (BAT), an important regulator of thermogenic and metabolic processes, is considered a promising target to combat metabolic disorders. The neurotransmitter and hormone serotonin (5HT) is a major modulator of energy homeostasis, with its central and peripheral pools acting in opposing ways. To better understand how individual variations in 5HT homeostasis influence the thermogenic functionality of BAT, we used a rat model consisting of two sublines with constitutively increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, developed by selective breeding for platelet 5HT parameters. We have shown that animals with constitutively low 5HT activity maintained at a standard housing temperature (22 °C) have greater interscapular BAT (iBAT) mass and higher iBAT metabolic activity (as evidenced by measurements of iBAT temperature and glucose uptake), accompanied by increased iBAT mRNA expression of key thermogenic genes, compared to animals with high 5HT tone. In response to further thermogenic challenges-intermittent cold exposure or treatment with a β3-adrenergic agonist-5HT sublines show several functional and molecular differences linking constitutively low endogenous 5HT tone to higher BAT activity/capacity. Overall, the results support a role of 5-HT in the control of BAT thermogenesis They also suggest that individuals with lower 5HT activity may be more sensitive to β3-adrenergic drugs.
Collapse
Affiliation(s)
- Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Vladimir Farkaš
- Department of Experimental Physics, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Robert Bagarić
- Department of Experimental Physics, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Pelantová H, Tomášová P, Šedivá B, Neprašová B, Mráziková L, Kuneš J, Železná B, Maletínská L, Kuzma M. Metabolomic Study of Aging in fa/ fa Rats: Multiplatform Urine and Serum Analysis. Metabolites 2023; 13:metabo13040552. [PMID: 37110210 PMCID: PMC10142631 DOI: 10.3390/metabo13040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Zucker fatty (fa/fa) rats represent a well-established and widely used model of genetic obesity. Because previous metabolomic studies have only been published for young fa/fa rats up to 20 weeks of age, which can be considered early maturity in male fa/fa rats, the aim of our work was to extend the metabolomic characterization to significantly older animals. Therefore, the urinary profiles of obese fa/fa rats and their lean controls were monitored using untargeted NMR metabolomics between 12 and 40 weeks of age. At the end of the experiment, the rats were also characterized by NMR and LC-MS serum analysis, which was supplemented by a targeted LC-MS analysis of serum bile acids and neurotransmitters. The urine analysis showed that most of the characteristic differences detected in young obese fa/fa rats persisted throughout the experiment, primarily through a decrease in microbial co-metabolite levels, the upregulation of the citrate cycle, and changes in nicotinamide metabolism compared with the age-related controls. The serum of 40-week-old obese rats showed a reduction in several bile acid conjugates and an increase in serotonin. Our study demonstrated that the fa/fa model of genetic obesity is stable up to 40 weeks of age and is therefore suitable for long-term experiments.
Collapse
Affiliation(s)
- Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petra Tomášová
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Blanka Šedivá
- Faculty of Applied Sciences, University of West Bohemia, 306 14 Pilsen, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
3
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
4
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|