1
|
McKay RR, Morgans AK, Shore ND, Dunshee C, Devgan G, Agarwal N. First-line combination treatment with PARP and androgen receptor-signaling inhibitors in HRR-deficient mCRPC: Applying clinical study findings to clinical practice in the United States. Cancer Treat Rev 2024; 126:102726. [PMID: 38613872 DOI: 10.1016/j.ctrv.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and develops from biochemically recurrent PC treated with androgen deprivation therapy (ADT) following definitive therapy for localized PC, or from metastatic castration-sensitive PC (mCSPC). In the mCSPC setting, treatment intensification of ADT plus androgen receptor (AR)-signaling inhibitors (ARSIs), with or without chemotherapy, improves outcomes vs ADT alone. Despite multiple phase 3 trials demonstrating a survival benefit of treatment intensification in PC, there remains high use of ADT monotherapy in real-world clinical practice. Prior studies indicate that co-inhibition of AR and poly(ADP-ribose) polymerase (PARP) may result in enhanced benefit in treating tumors regardless of alterations in DNA damage response genes involved either directly or indirectly in homologous recombination repair (HRR). Three recent phase 3 studies evaluated the combination of a PARP inhibitor (PARPi) with an ARSI as first-line treatment for mCRPC: TALAPRO-2, talazoparib plus enzalutamide; PROpel, olaparib plus abiraterone acetate and prednisone (AAP); and MAGNITUDE, niraparib plus AAP. Results from these studies have led to the recent approval in the United States of talazoparib plus enzalutamide for the treatment of mCRPC with any HRR alteration, and of both olaparib and niraparib indicated in combination with AAP for the treatment of mCRPC with BRCA alterations. SUMMARY Here, we review the newly approved PARPi plus ARSI treatments within the context of the mCRPC treatment landscape, provide an overview of practical considerations for the combinations in clinical practice, highlight the importance of HRR testing, and discuss the benefits of treatment intensification for patients with mCRPC.
Collapse
Affiliation(s)
- Rana R McKay
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Alicia K Morgans
- Harvard Medical School, Dana-Farber Cancer Institute, 450 Brookline Ave, Dana 09-930, Boston, MA 02215, USA.
| | - Neal D Shore
- Carolina Urologic Research Center, 823 82nd Parkway, Suite B, Myrtle Beach, SC 29572, USA.
| | - Curtis Dunshee
- Urology Specialists, 2260 W. Orange Grove Road, Tucson, AZ 85741, USA.
| | - Geeta Devgan
- Pfizer Inc., 66 Hudson Blvd East, New York, NY 10001, USA.
| | - Neeraj Agarwal
- Huntsman Cancer Institute (NCI-CCC), University of Utah, 2000 Circle of Hope Drive, Suite 5726, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Cimadamore A, Franzese C, Di Loreto C, Blanca A, Lopez-Beltran A, Crestani A, Giannarini G, Tan PH, Carneiro BA, El-Deiry WS, Montironi R, Cheng L. Predictive and prognostic biomarkers in urological tumours. Pathology 2024; 56:228-238. [PMID: 38199927 DOI: 10.1016/j.pathol.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024]
Abstract
Advancements in cutting-edge molecular profiling techniques, such as next-generation sequencing and bioinformatic analytic tools, have allowed researchers to examine tumour biology in detail and stratify patients based on factors linked with clinical outcome and response to therapy. This manuscript highlights the most relevant prognostic and predictive biomarkers in kidney, bladder, prostate and testicular cancers with recognised impact in clinical practice. In bladder and prostate cancer, new genetic acquisitions concerning the biology of tumours have modified the therapeutic scenario and led to the approval of target directed therapies, increasing the quality of patient care. Thus, it has become of paramount importance to choose adequate molecular tests, i.e., FGFR screening for urothelial cancer and BRCA1-2 alterations for prostate cancer, to guide the treatment plan for patients. While no tissue or blood-based biomarkers are currently used in routine clinical practice for renal cell carcinoma and testicular cancers, the field is quickly expanding. In kidney tumours, gene expression signatures might be the key to identify patients who will respond better to immunotherapy or anti-angiogenic drugs. In testicular germ cell tumours, the use of microRNA has outperformed conventional serum biomarkers in the diagnosis of primary tumours, prediction of chemoresistance, follow-up monitoring, and relapse prediction.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Institute of Pathological Anatomy, Department of Medicine (DAME), Udine University, Udine, Italy.
| | - Carmine Franzese
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | - Carla Di Loreto
- Institute of Pathological Anatomy, Department of Medicine (DAME), Udine University, Udine, Italy
| | - Ana Blanca
- Maimonides Biomedical Research Institute of Cordoba, Department of Urology, University Hospital of Reina Sofia, UCO, Cordoba, Spain
| | | | - Alessandro Crestani
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | - Gianluca Giannarini
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | | | - Benedito A Carneiro
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA
| | - Wafik S El-Deiry
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical and Molecular Sciences, Polytechnic University of the Marche Region, Ancona, Italy
| | - Liang Cheng
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA.
| |
Collapse
|
3
|
Cimadamore A, Rescigno P, Conteduca V, Caliò A, Allegritti M, Calò V, Montagnani I, Lucianò R, Patruno M, Bracarda S. SIUrO best practice recommendations to optimize BRCA 1/2 gene testing from DNA extracted from bone biopsy in mCRPC patients (BRCA Optimal Bone Biopsy Procedure: BOP). Virchows Arch 2023; 483:579-589. [PMID: 37794204 DOI: 10.1007/s00428-023-03660-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
The main guidelines and recommendations for the implementation of the BRCA1/2 somatic test do not focus on the clinical application of predictive testing on bone metastases, a frequent condition in metastatic prostate cancer, by analyzing the critical issues encountered by laboratory practice. Our goal is to produce a document (protocol) deriving from a multidisciplinary team approach to obtain high quality nucleic acids from biopsy of bone metastases. This document aims to compose an operational check-list of three phases: the pre-analytical phase concerns tumor cellularity, tissue processing, sample preservation (blood/FFPE), fixation and staining, but above all the decalcification process, the most critical phase because of its key role in allowing the extraction of somatic DNA with a good yield and high quality. The analytical phase involves the preparation of the libraries that can be analyzed in various NGS genetic sequencing platforms and with various bioinformatics software for the interpretation of sequence variants. Finally, the post-analytical phase that allows to report the variants of the BRCA1/2 genes in a clear and usable way to the clinician who will use these data to manage cancer therapy with PARP Inhibitors.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Institute of Pathological Anatomy, Department of Medicine (DAME), University of Udine, Via Palladio 8, 33100, Udine, Italy.
| | - Pasquale Rescigno
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences - Policlinico Riuniti, University of Foggia, 71122, Foggia, Italy
| | - Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Massimiliano Allegritti
- Interventional radiology Unit, Azienda ospedaliera Santa Maria Terni, Viale Tristano di Joannuccio, 05100, Terni, Italy
| | - Valentina Calò
- Central Laboratory of Advanced Diagnosis and Biomedical Research, (CLADIBIOR) Policlinico Paolo Giaccone Hospital, University of Palermo, 90127, Palermo, Italy
| | - Ilaria Montagnani
- Pathology Unit, USL Toscana Centro - Ospedale San Giuseppe, Empoli, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Patruno
- Center for Study of Heredo-Familial Tumors - IRCCS Istituto Tumori "Giovanni Paolo II,", Bari, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano di Joannuccio, 05100, Terni, Italy
| |
Collapse
|
4
|
Montironi R, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Scarpelli M, Cheng L. Histopathology of Prostate Cancer and its Precursors. Appl Immunohistochem Mol Morphol 2023; 31:467-477. [PMID: 36222497 DOI: 10.1097/pai.0000000000001067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Starting in the mid-1970s, we formed a group of pathologists with a major interest in uropathology. Originally, it included 2 (R.M. and M.S.). In the years the followed, the group was enlarged to include 4 more people, 2 in the mid- and late-1980s (A.L.B. and L.C.) and another in the mid-1990s (R.Ma.); a sixth (A.C.) joined the group ∼5 years ago. Two have reached the retirement age (R.M. and M.S.), while others are in the process of joining the group to replace them. A fruitful collaboration spanned for ∼45 years. This contribution is based on a series of personal recollections of the successive changes in the interpretation of prostate cancer and its precursors, starting in the mid-1970s. Here we have retraced our involvement steps, sharing issues related to them with a junior uropathologist (A.C.).
Collapse
Affiliation(s)
- Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Roberta Mazzucchelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, Spain
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Nuvola G, Santoni M, Rizzo M, Rosellini M, Mollica V, Rizzo A, Marchetti A, Battelli N, Massari F. Adapting to hormone-therapy resistance for adopting the right therapeutic strategy in advanced prostate cancer. Expert Rev Anticancer Ther 2023; 23:593-600. [PMID: 37185042 DOI: 10.1080/14737140.2023.2207827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
INTRODUCTION The androgen/androgen receptor (AR) axis represents a key driver of treatment resistance in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT) and targeted agents, and a deeper comprehension of resistance mechanisms is fundamental to adopt effective therapeutic strategies. AREAS COVERED We review the mechanisms of primary or secondary resistance to hormone therapy (HT) in PCa, especially focusing on available data and emerging evidence. EXPERT OPINION First- and second-generation HT resistance has been associated with several AR-dependent and AR-independent mechanisms, ranging from the amplification of the AR gene locus to somatic AR mutations and the intratumoral synthesis of androgens from adrenal steroids and cholesterol. As reported in the current review, the development of novel and effective treatments is needed to personalize anticancer therapies in this setting and to finally improve clinical outcomes in patients with HT resistant disease.
Collapse
Affiliation(s)
- Giacomo Nuvola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italia
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy
| | - Mimma Rizzo
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italia
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italia
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Istituto Tumori Giovanni Paolo II-Bari, 70124 Bari, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italia
| | - Nicola Battelli
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italia
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Catalano M, Generali D, Gatti M, Riboli B, Paganini L, Nesi G, Roviello G. DNA repair deficiency as circulating biomarker in prostate cancer. Front Oncol 2023; 13:1115241. [PMID: 36793600 PMCID: PMC9922904 DOI: 10.3389/fonc.2023.1115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Deleterious aberrations in DNA repair genes are actionable in approximately 25% of metastatic castration-resistant prostate cancers (mCRPC) patients. Homology recombination repair (HRR) is the DNA damage repair (DDR) mechanism most frequently altered in prostate cancer; of note BRCA2 is the most frequently altered DDR gene in this tumor. Poly ADP-ribose polymerase inhibitors showed antitumor activity with a improvement in overall survival in mCRPC carrying somatic and/or germline alterations of HHR. Germline mutations are tested on peripheral blood samples using DNA extracted from peripheral blood leukocytes, while the somatic alterations are assessed by extracting DNA from a tumor tissue sample. However, each of these genetic tests have some limitations: the somatic tests are related to the sample availability and tumor heterogeneity, while the germline testing are mainly related to the inability to detect somatic HRR mutations. Therefore, the liquid biopsy, a non-invasive and easily repeatable test compared to tissue test, could identified somatic mutation detected on the circulating tumor DNA (ctDNA) extracted from a plasma. This approach should better represent the heterogeneity of the tumor compared to the primary biopsy and maybe helpful in monitoring the onset of potential mutations involved in treatment resistance. Furthermore, ctDNA may inform about timing and potential cooperation of multiple driver genes aberration guiding the treatment options in patients with mCRPC. However, the clinical use of ctDNA test in prostate cancer compared to blood and tissue testing are currently very limited. In this review, we summarize the current therapeutic indications in prostate cancer patients with DDR deficiency, the recommendation for germline and somatic-genomic testing in advanced PC and the advantages of the use liquid biopsy in clinical routine for mCRPC.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital Trieste, Trieste, Italy
| | - Marta Gatti
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Barbara Riboli
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Leda Paganini
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
7
|
Lieb V, Abdulrahman A, Weigelt K, Hauch S, Gombert M, Guzman J, Bellut L, Goebell PJ, Stöhr R, Hartmann A, Wullich B, Taubert H, Wach S. Cell-Free DNA Sequencing Reveals Gene Variants in DNA Damage Repair Genes Associated with Prognosis of Prostate Cancer Patients. Cells 2022; 11:cells11223618. [PMID: 36429046 PMCID: PMC9688453 DOI: 10.3390/cells11223618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
In the present study, we further analyzed the data obtained in our previous study, where we investigated the cell-free DNA (cfDNA) of 34 progressive prostate cancer patients via targeted sequencing. Here, we studied the occurrence and prognostic impact of sequence variants according to their clinical pathological significance (CPS) or their functional impact (FI) in 23 DNA damage repair (DDR) genes with a focus on the ATM serine/threonine kinase gene (ATM). All patients had at least one DDR gene with a CPS or FI variant. Kaplan-Meier analysis indicated that the group with a higher number of CPS variants in DDR genes had a shorter time to treatment change (TTC) compared to the group with a lower number of CPS variants (p = 0.038). Analysis of each DDR gene revealed that CPS variants in the ATM gene and FI variants in the nibrin (NBN) gene showed a shorter TTC (p = 0.034 and p = 0.042). In addition, patients with CPS variants in the ATM gene had shorter overall survival (OS; p = 0.022) and disease-specific survival (DSS; p = 0.010) than patients without these variants. Interestingly, patients with CPS variants in seven DDR genes possessed a better OS (p = 0.008) and DSS (p = 0.009), and patients with FI variants in four DDR genes showed a better OS (p = 0.007) and DSS (p = 0.008). Together, these findings demonstrated that the analysis of cfDNA for gene variants in DDR genes provides prognostic information that may be helpful for future temporal and targeted treatment decisions for advanced PCa patients.
Collapse
Affiliation(s)
- Verena Lieb
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Amer Abdulrahman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | | | | | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura Bellut
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Peter J. Goebell
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Robert Stöhr
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-93138523373
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Durães C, Pereira Gomes C, Costa JL, Quagliata L. Demystifying the Discussion of Sequencing Panel Size in Oncology Genetic Testing. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/22c9259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Clinical laboratories worldwide are implementing next-generation sequencing (NGS) to identify cancer genomic variants and ultimately improve patient outcomes. The ability to massively sequence the entire genome or exome of tumour cells has been critical to elucidating many complex biological questions. However, the depth of information obtained by these methods is strenuous to process in the clinical setting, making them currently unfeasible for broader adoption. Instead, targeted sequencing, usually on a selection of clinically relevant genes, represents the predominant approach that best balances accurate identification of genomic variants with high sensitivity and a good cost-effectiveness ratio. The information obtained from targeted sequencing can support diagnostic classification, guide therapeutic decisions, and provide prognostic insights. The use of targeted gene panels expedites sample processing, including data analysis, results interpretation, and medical reports generation, directly affecting patient management. The key decision factors for selecting sequencing methods and panel size in routine testing should include diagnostic yield and clinical utility, sample availability, and processing turnaround time.
Profiling by default all patients with late-stage cancer with large panels is not affordable for most healthcare systems and does not provide substantial clinical benefit at present. Balancing between understanding cancer biology, including patients in clinical trials, maximising testing, and ensuring a sustainable financial burden for society requires thorough consideration. This review provides an overview of the advantages and drawbacks of different sizes NGS panels for tumour molecular profiling and their clinical applicability.
Collapse
Affiliation(s)
- Cecília Durães
- Clinical Next-Generation Sequencing Division, Genetic Sciences Group, Thermo Fisher Scientific, Carlsbad, California, USA
| | | | - Jose Luis Costa
- Clinical Next-Generation Sequencing Division, Genetic Sciences Group, Thermo Fisher Scientific, Carlsbad, California, USA
| | - Luca Quagliata
- Clinical Next-Generation Sequencing Division, Genetic Sciences Group, Thermo Fisher Scientific, Carlsbad, California, USA
| |
Collapse
|
9
|
Saha S, Araf Y, Promon SK. Circulating tumor DNA in cancer diagnosis, monitoring, and prognosis. J Egypt Natl Canc Inst 2022; 34:8. [PMID: 35187602 DOI: 10.1186/s43046-022-00109-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has become one of the crucial components for cancer detection with the increase of precision medicine practice. ctDNA has great potential as a blood-based biomarker for the detection and treatment of cancer in its early stages. The purpose of this article was to discuss ctDNA and how it can be utilized to detect cancer. The benefits and drawbacks of this cancer detection technology, as well as the field's future possibilities in various cancer management scenarios, are discussed. MAIN TEXT: ctDNA has clinical applications in disease diagnosis and monitoring. It can be used to identify mutations of interest and genetic heterogeneity. Another use of ctDNA is to monitor the effects of therapy by detecting mutation-driven resistance. Different technologies are being used for the detection of ctDNA. Next-generation sequencing, digital PCR, real-time PCR, and mass spectrometry are used. Using dPCR makes it possible to partition and analyze individual target sequences from a complex mixture. Mass-spectrometry technology enables accurate detection and quantification of ctDNA mutations at low frequency. Surface-enhanced Raman spectroscopy (SERS) and UltraSEEK are two systems based on this technology. There is no unified standard for detecting ctDNA as it exists in a low concentration in blood. As there is no defined approach, false positives occur in several methods due to inadequate sensitivities. Techniques used in ctDNA are costly and there is a limitation in clinical settings. SHORT CONCLUSION A detailed investigation is urgently needed to increase the test's accuracy and sensitivity. To find a standard marker for all forms of cancer DNA, more study is needed. Low concentrations of ctDNA in a sample require improved technology to provide the precision that low concentrations of ctDNA in a sample afford.
Collapse
Affiliation(s)
- Sudeepto Saha
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Salman Khan Promon
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh.
| |
Collapse
|
10
|
Mollica V, Marchetti A, Rosellini M, Nuvola G, Rizzo A, Santoni M, Cimadamore A, Montironi R, Massari F. An Insight on Novel Molecular Pathways in Metastatic Prostate Cancer: A Focus on DDR, MSI and AKT. Int J Mol Sci 2021; 22:ijms222413519. [PMID: 34948314 PMCID: PMC8708596 DOI: 10.3390/ijms222413519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is still one of the main causes of cancer-related death in the male population, regardless of the advancements in the treatment scenario. The genetic knowledge on prostate cancer is widely increasing, allowing researchers to identify novel promising molecular targets and treatment approaches. Genomic profiling has evidenced that DNA damage repair genes’ alterations are quite frequent in metastatic, castration resistant prostate cancer and specific therapies can interfere with this pathway, showing promising activity in this setting. Microsatellite instability is gaining attention as it seems to represent a predictive factor of the response to immunotherapy. Furthermore, the PTEN-PI3K-AKT pathway is another possible treatment target being investigated. In this review, we explore the current knowledge on these frequent genomic alterations of metastatic prostate cancer, their possible therapeutic repercussions and the promising future treatments under evaluation.
Collapse
Affiliation(s)
- Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Giacomo Nuvola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy
- Correspondence:
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical and Molecular Sciences, Polytechnic University of the Marche Region, 60100 Ancona, Italy;
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| |
Collapse
|
11
|
Giunta EF, Annaratone L, Bollito E, Porpiglia F, Cereda M, Banna GL, Mosca A, Marchiò C, Rescigno P. Molecular Characterization of Prostate Cancers in the Precision Medicine Era. Cancers (Basel) 2021; 13:4771. [PMID: 34638258 PMCID: PMC8507555 DOI: 10.3390/cancers13194771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) therapy has been recently revolutionized by the approval of new therapeutic agents in the metastatic setting. However, the optimal therapeutic strategy in such patients should be individualized in the light of prognostic and predictive molecular factors, which have been recently studied: androgen receptor (AR) alterations, PTEN-PI3K-AKT pathway deregulation, homologous recombination deficiency (HRD), mismatch repair deficiency (MMRd), and tumor microenvironment (TME) modifications. In this review, we highlighted the clinical impact of prognostic and predictive molecular factors in PCa patients' outcomes, identifying biologically distinct subtypes. We further analyzed the relevant methods to detect these factors, both on tissue, i.e., immunohistochemistry (IHC) and molecular tests, and blood, i.e., analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Moreover, we discussed the main pros and cons of such techniques, depicting their present and future roles in PCa management, throughout the precision medicine era.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Enrico Bollito
- Department of Pathology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, 10060 Turin, Italy;
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO2 8QD, UK;
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|
12
|
Prostate Cancer in 2021: Novelties in Prognostic and Therapeutic Biomarker Evaluation. Cancers (Basel) 2021; 13:cancers13143471. [PMID: 34298683 PMCID: PMC8307279 DOI: 10.3390/cancers13143471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In 2021, the identification of effective biomarkers became a major focus of prostate cancer (PCa) in order to improve outcomes and select potentially responsive patients. The aim of this contribution is to review the main 2021 novelties in prognostic and therapeutic markers in PCa, with special reference to PCa grading, aggressive variant PCa and molecular markers predicting significant disease or response to therapy. Abstract The 2021 novelties in prognostic and therapeutic tissue markers in patients with prostate cancer (PCa) can be subdivided into two major groups. The first group is related to prognostic markers based on morphological and immunohistochemical evaluations. The novelties in this group can then be subdivided into two subgroups, one involving morphologic evaluation only, i.e., PCa grading, and the other involving both morphologic and immunohistochemical evaluations, i.e., aggressive variant PCa (AVPCa). Grading concerns androgen-dependent PCa, while AVPCa represents a late phase in its natural history, when it becomes androgen-independent. The novelties of the other major group are related to molecular markers predicting significant disease or response to therapy. This group mainly includes novelties in the molecular evaluation of PCa in tissue material and liquid biopsies.
Collapse
|