1
|
Kollmar J, Xu J, Gonzalves D, Baur JA, Li LZ, Tchou J, Xu HN. Differential Mitochondrial Redox Responses to the Inhibition of NAD + Salvage Pathway of Triple Negative Breast Cancer Cells. Cancers (Basel) 2024; 17:7. [PMID: 39796638 PMCID: PMC11718843 DOI: 10.3390/cancers17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD+. Over expression of Nampt, the rate-limiting enzyme of the NAD+ biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy. However, TNBC cells have heterogeneous responses to Nampt inhibition, which contributes to the diverse outcomes. There is a lack of imaging biomarkers to differentiate among TNBC cells under metabolic stress and identify which are responsive. We aimed to characterize and differentiate among a panel of TNBC cell lines under NAD-deficient stress and identify which subtypes are more dependent on the NAD salvage pathway. Methods: Optical redox imaging (ORI), a label-free live cell imaging microscopy technique was utilized to acquire intrinsic fluorescence intensities of NADH and FAD-containing flavoproteins (Fp) thus the mitochondrial redox ratio Fp/(NADH + Fp) in a panel of TNBC cell lines. Various fluorescence probes were then added to the cultures to image the mitochondrial ROS, mitochondrial membrane potential, mitochondrial mass, and cell number. Results: Various TNBC subtypes are sensitive to Nampt inhibition in a dose- and time-dependent manner, they have differential mitochondrial redox responses; furthermore, the mitochondrial redox indices linearly correlated with mitochondrial ROS induced by various doses of a Nampt inhibitor. Moreover, the changes in the redox indices correlated with growth inhibition. Additionally, the redox state was found fully recovered after removing the Nampt inhibitor. Conclusions: This study supports the utility of ORI in rapid metabolic phenotyping of TNBC cells under NAD-deficient stress to identify responsive cells and biomarkers of treatment response, facilitating combination therapy strategies.
Collapse
Affiliation(s)
- Jack Kollmar
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Junmei Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Julia Tchou
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| |
Collapse
|
2
|
Podsednik A, Xu HN, Li LZ. Passage dependence of NADH redox status and reactive oxygen species level in vitro in triple-negative breast cancer cell lines with different invasiveness. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:27. [PMID: 39534579 PMCID: PMC11557164 DOI: 10.21037/tbcr-24-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Background The redox status of nicotinamide adenine dinucleotide (NAD; including oxidized form NAD+ and reduced form NADH) plays key roles in both health and disease and has been actively studied to develop cancer biomarkers and therapeutic strategies. With the optical redox imaging (ORI) technique, we have been investigating the relationship of NADH redox status, reactive oxygen species (ROS), and invasiveness in breast cancer cell cultures, and have associated higher invasiveness with more oxidized NADH redox state. However, the cell cultures may have phenotypic drift and metabolic change with increased passage numbers. Methods We investigated the passage-dependence of NADH redox status and ROS levels in two triple-negative breast cancer (TNBC) cell cultures: the more invasive/metastatic MDA-MB-231 and the less invasive/metastatic HCC1806 cell lines. We measured the NADH redox status, redox plasticity, and cytoplasmic and mitochondrial ROS levels under the basal condition and metabolic perturbations of the mitochondrial electron transport chain. We evaluated the dependence of redox and ROS profiles on the cell passage number by comparing the early (<20 passages) with the late (>60 passages) passage cells. Results (I) NADH redox and ROS baselines are stable and independent of cell passage number, but can vary with passage number under metabolic perturbations depending on specific perturbation and cell line; (II) NADH redox status and intracellular ROS levels can change discordantly in cancer cells; (III) under both basal and metabolically perturbed conditions, the more invasive cell line has a more oxidized NADH redox status with a higher basal cytoplasmic ROS level than the less invasive line, regardless of passage number. Conclusions The general correlation between redox, ROS, and invasiveness in studied TNBC cells is not very sensitive to passage number. These results indicate that NADH redox and basal ROS status in TNBC likely reflect the intrinsic progressive nature of TNBC cells.
Collapse
Affiliation(s)
- Allison Podsednik
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Z Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Sorrells JE, Park J, Aksamitiene E, Marjanovic M, Martin EM, Chaney EJ, Higham AM, Cradock KA, Liu ZG, Boppart SA. Label-free nonlinear optical signatures of extracellular vesicles in liquid and tissue biopsies of human breast cancer. Sci Rep 2024; 14:5528. [PMID: 38448508 PMCID: PMC10917806 DOI: 10.1038/s41598-024-55781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.
Collapse
Affiliation(s)
- Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisabeth M Martin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Urbana, IL, 61801, USA
| | | | | | - Zheng G Liu
- Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Gooz M, Maldonado EN. Fluorescence microscopy imaging of mitochondrial metabolism in cancer cells. Front Oncol 2023; 13:1152553. [PMID: 37427141 PMCID: PMC10326048 DOI: 10.3389/fonc.2023.1152553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Metabolites 2022; 12:metabo12111097. [PMID: 36422237 PMCID: PMC9697641 DOI: 10.3390/metabo12111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.
Collapse
|
6
|
Acconcia F. Editorial for the Special Issue “New Drugs for Breast Cancer Treatment”. Int J Mol Sci 2022; 23:ijms231810265. [PMID: 36142174 PMCID: PMC9499552 DOI: 10.3390/ijms231810265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy
| |
Collapse
|
7
|
Papakonstantinou E, Piperigkou Z, Karamanos NK, Zolota V. Altered Adipokine Expression in Tumor Microenvironment Promotes Development of Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:4139. [PMID: 36077676 PMCID: PMC9454958 DOI: 10.3390/cancers14174139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a remarkably important factor for breast carcinogenesis and aggressiveness. The implication of increased BMI in triple negative breast cancer (TNBC) development is also well established. A malignancy-promoting role of the adipose tissue has been supposed, where the adipocytes that constitute the majority of stromal cells release pro-inflammatory cytokines and growth factors. Alterations in adipokines and their receptors play significant roles in breast cancer initiation, progression, metastasis, and drug response. Classic adipokines, such as leptin, adiponectin, and resistin, have been extensively studied in breast cancer and connected with breast cancer risk and progression. Notably, new molecules are constantly being discovered and the list is continuously growing. Additionally, substantial progress has been made concerning their differential expression in association with clinical and pathological parameters of tumors and the prognostic and predictive value of their dysregulation in breast cancer carcinogenesis. However, evidence regarding the mechanisms by which adipose tissue is involved in the development of TNBC is lacking. In the present article we comment on current data on the suggested involvement of these mediators in breast cancer development and progression, with particular emphasis on TNBC, to draw attention to the design of novel targeted therapies and biomarkers.
Collapse
Affiliation(s)
- Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics, School of Medicine, University of Patras, 26504 Patras, Greece or
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
8
|
Xu HN, Gourmaud S, Podsednik A, Li X, Zhao H, Jensen FE, Talos DM, Li LZ. Optical Redox Imaging of Ex Vivo Hippocampal Tissue Reveals Age-Dependent Alterations in the 5XFAD Mouse Model of Alzheimer’s Disease. Metabolites 2022; 12:metabo12090786. [PMID: 36144191 PMCID: PMC9504813 DOI: 10.3390/metabo12090786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
A substantial decline in nicotinamide adenine dinucleotide (NAD) has been reported in brain tissue homogenates or neurons isolated from Alzheimer’s disease (AD) models. NAD, together with flavin adenine dinucleotide (FAD), critically supports energy metabolism and maintains mitochondrial redox homeostasis. Optical redox imaging (ORI) of the intrinsic fluorescence of reduced NAD (NADH) and oxidized FAD yields cellular redox and metabolic information and provides biomarkers for a variety of pathological conditions. However, its utility in AD has not been characterized at the tissue level. We performed ex vivo ORI of freshly dissected hippocampi from a well-characterized AD mouse model with five familial Alzheimer’s disease mutations (5XFAD) and wild type (WT) control littermates at various ages. We found (1) a significant increase in the redox ratio with age in the hippocampi of both the WT control and the 5XFAD model, with a more prominent redox shift in the AD hippocampi; (2) a higher NADH in the 5XFAD versus WT hippocampi at the pre-symptomatic age of 2 months; and (3) a negative correlation between NADH and Aβ42 level, a positive correlation between Fp and Aβ42 level, and a positive correlation between redox ratio and Aβ42 level in the AD hippocampi. These findings suggest that the ORI can be further optimized to conveniently study the metabolism of freshly dissected brain tissues in animal models and identify early AD biomarkers.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (H.N.X.); (D.M.T.); (L.Z.L.)
| | - Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison Podsednik
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Frances E. Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia M. Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (H.N.X.); (D.M.T.); (L.Z.L.)
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (H.N.X.); (D.M.T.); (L.Z.L.)
| |
Collapse
|
9
|
Jacob A, Xu HN, Stout AL, Li LZ. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210375GR. [PMID: 35945669 PMCID: PMC9360498 DOI: 10.1117/1.jbo.27.8.086001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Stratification of malignancy is valuable for cancer treatment. Both optical redox imaging (ORI) indices and nuclear-to-cytoplasmic volume/area ratio (N:C ratio) have been investigated to differentiate between cancers with varying aggressiveness, but these two methods have not been directly compared. The redox status in the cell nucleus has not been studied by ORI, and it remains unknown whether nuclear ORI indices add new biological information. AIM We sought to compare the capacity of whole-cell and subcellular ORI indices and N:C ratio to differentiate between breast cancer subtypes with varying aggressiveness and between mitotic and nonmitotic cells. APPROACH ORI indices for whole cell, cytoplasm, and nucleus as well as the N:C area ratio were generated for two triple-negative (more aggressive) and two receptor-positive (less aggressive) breast cancer cell lines by fluorescence microscopy. RESULTS We found positive correlations between nuclear and cytoplasmic ORI indices within individual cells. On average, a nuclear redox status was found to be more oxidized than cytoplasm in triple-negative cells but not in receptor-positive cells. Whole-cell and subcellular ORI indices distinguished between the receptor statuses better than the N:C ratio. However, N:C ratio was a better differentiator between nonmitotic and mitotic triple-negative cells. CONCLUSIONS Subcellular ORI analysis differentiates breast cancer subtypes with varying aggressiveness better than N:C area ratio.
Collapse
Affiliation(s)
- Annemarie Jacob
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
| | - He N. Xu
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Institute of Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States
| | - Andrea L. Stout
- University of Pennsylvania, Perelman School of Medicine, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States
| | - Lin Z. Li
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Institute of Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States
| |
Collapse
|
10
|
Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers (Basel) 2022; 14:cancers14092059. [PMID: 35565188 PMCID: PMC9103253 DOI: 10.3390/cancers14092059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The advantages and applications of using the non-invasive way to detect serum biomarkers for assessing cancer diagnosis and prognosis have been explored. Nicotinamide phosphoribosyltransferase (NAMPT), also designated as pre-B-cell colony-enhancing factor (PBEF) or visfatin, is a secreted adipokine known to modulate tumor malignancies. Its significance in predicting cancer patient’s survival outcome further renders the implementation of NAMPT in clinical practice. In this review, recent discoveries of NAMPT in cancer studies were focused and integrated. We aim to provide updates for researchers who are proposing relevant objectives. Abstract Nicotinamide phosphoribosyltransferase (NAMPT) is notable for its regulatory roles in tumor development and progression. Emerging evidence regarding NAMPT somatic mutations in cancer patients, NAMPT expressional signatures in normal tissues and cancers, and the prognostic significance of NAMPT in many cancer types has attracted attention, and NAMPT is considered a potential biomarker of cancer. Recent discoveries have demonstrated the indirect association and direct biological functions of NAMPT in modulating cancer metastasis, proliferation, angiogenesis, cancer stemness, and chemoresistance to anticancer drugs. These findings warrant further investigation of the underlying mechanisms to provide knowledge for developing novel cancer therapeutics. In this review article, we explore recent research developments involving the oncogenic activities of NAMPT by summarizing current knowledge regarding NAMPT somatic mutations, clinical trials, transcriptome data, and clinical information and discoveries related to the NAMPT-induced signaling pathway in modulating hallmarks of cancer. Furthermore, the comprehensive representation of NAMPT RNA expression in a pancancer panel as well as in specific normal cell types at single-cell level are demonstrated. The results suggest potential sites and cell types that could facilitate NAMPT-related tumorigenesis. With this review, we aim to shed light on the regulatory roles of NAMPT in tumor development and progression, and provide information to guide future research directions in this field.
Collapse
|
11
|
Quantitative Analysis of Daporinad (FK866) and Its In Vitro and In Vivo Metabolite Identification Using Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry. Molecules 2022; 27:molecules27062011. [PMID: 35335372 PMCID: PMC8954816 DOI: 10.3390/molecules27062011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Daporinad (FK866) is one of the highly specific inhibitors of nicotinamide phosphoribosyl transferase (NAMPT) and known to have its unique mechanism of action that induces the tumor cell apoptosis. In this study, a simple and sensitive liquid chromatography–quadrupole-time-of-flight–mass spectrometric (LC-qTOF-MS) assay has been developed for the evaluation of drug metabolism and pharmacokinetics (DMPK) properties of Daporinad in mice. A simple protein precipitation method using acetonitrile (ACN) was used for the sample preparation and the pre-treated samples were separated by a C18 column. The calibration curve was evaluated in the range of 1.02~2220 ng/mL and the quadratic regression (weighted 1/concentration2) was used for the best fit of the curve with a correlation coefficient ≥ 0.99. The qualification run met the acceptance criteria of ±25% accuracy and precision values for QC samples. The dilution integrity was verified for 5, 10 and 30-fold dilution and the accuracy and precision of the dilution QC samples were also satisfactory within ±25% of the nominal values. The stability results indicated that Daporinad was stable for the following conditions: short-term (4 h), long-term (2 weeks), freeze/thaw (three cycles). This qualified method was successfully applied to intravenous (IV) pharmacokinetic (PK) studies of Daporinad in mice at doses of 5, 10 and 30 mg/kg. As a result, it showed a linear PK tendency in the dose range from 5 to 10 mg/kg, but a non-linear PK tendency in the dose of 30 mg/kg. In addition, in vitro and in vivo metabolite identification (Met ID) studies were conducted to understand the PK properties of Daporinad and the results showed that a total of 25 metabolites were identified as ten different types of metabolism in our experimental conditions. In conclusion, the LC-qTOF-MS assay was successfully developed for the quantification of Daporinad in mouse plasma as well as for its in vitro and in vivo metabolite identification.
Collapse
|
12
|
Xu HN, Jacob A, Li LZ. Optical Redox Imaging Is Responsive to TGFβ Receptor Signalling in Triple-Negative Breast Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:269-274. [PMID: 36527648 PMCID: PMC11289671 DOI: 10.1007/978-3-031-14190-4_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Co-enzyme nicotinamide adenine dinucleotide NAD(H) regulates hundreds of biochemical reactions within the cell. We previously reported that NAD(H) redox status may have prognostic value for predicting breast cancer metastasis. However, the mechanisms of NAD(H) involvement in metastasis remain elusive. Given the important roles of TGFβ signalling in metastatic processes, such as promoting the epithelial-to-mesenchymal transition, we aimed to investigate the involvement of the mitochondrial NAD(H) redox status in TGFβ receptor signalling. Here we present the initial evidence that NAD(H) redox status is responsive to TGFβ receptor signalling in triple-negative breast cancer cells in culture. The mitochondrial NAD(H) redox status was determined by the optical redox imaging (ORI) technique. Cultured HCC1806 (less aggressive) and MDA-MB-231 (more aggressive) cells were subjected to ORI after treatment with exogenous TGFβ1 or LY2109761, which stimulates or inhibits TGFβ receptor signalling, respectively. Cell migration was determined with the transwell migration assay. Global averaging quantification of the ORI images showed that 1) TGFβ1 stimulation resulted in differential responses between HCC1806 and MDA-MB-231 lines, with HCC1806 cells having a significant change in the mitochondrial redox status, corresponding to a larger increase in cell migration; 2) HCC1806 cells acutely treated with LY2109761 yielded immediate increases in ORI signals. These preliminary data are the first evidence that suggests the existence of a cell line-dependent shift of the mitochondrial NAD(H) redox status in the TGFβ receptor signalling induced migratory process of breast cancer cells. Further research should be conducted to confirm these results as improved understanding of the underlying mechanisms of metastatic process may contribute to the identification of prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Annemarie Jacob
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Z Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|