1
|
Dong C, Zhang Y, Zeng J, Chong S, Liu Y, Bian Z, Fan S, Chen X. FUT2 promotes colorectal cancer metastasis by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1. Commun Biol 2024; 7:1297. [PMID: 39390072 PMCID: PMC11467212 DOI: 10.1038/s42003-024-06993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second most lethal cancer worldwide because of its high rate of metastasis, and approximately 20% of CRC patients have metastases at initial diagnosis. Metabolic reprogramming, a hallmark of cancer cells, has been implicated in the process of metastasis. We previously demonstrated that fucosyltransferase 2 (FUT2) promotes the malignancy of CRC cells, however, the underlying mechanisms remain unclear. Here, bioinformatic analysis revealed that FUT2 is associated with the malignant phenotype and fatty acid metabolism in CRC. FUT2 knockdown decreased glucose uptake and de novo fatty acid synthesis, which in turn inhibited the proliferation and metastasis of CRC cells. Mechanistically, FUT2 promotes YAP1 nuclear translocation and stabilizes mSREBP-1 by fucosylation, thus promoting de novo fatty acid synthesis in CRC cells. In summary, this study demonstrates that FUT2 promotes the proliferation and metastasis of CRC cells by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1, indicating that FUT2 might be a potential target for developing therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Chenfei Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiayue Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Suli Chong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziming Bian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Liu X, Li X, Li H, Guan B, Jiang Y, Zheng C, Kong D. Annexin A1: a key regulator of T cell function and bone marrow adiposity in aplastic anaemia. J Physiol 2024. [PMID: 39373986 DOI: 10.1113/jp286148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
This study investigates the role of Annexin A1 (ANXA1) in regulating T cell function and its implications in bone marrow adiposity in aplastic anaemia (AA). Utilizing single-cell sequencing analysis, we compared bone marrow tissues from AA patients and healthy individuals, focusing on T cell subgroups and their impact on bone marrow pathology. Our findings reveal a significant activation of CD8+ T cells in AA, driven by reduced ANXA1 expression. This heightened T cell activity promotes adipogenesis in bone marrow-derived mesenchymal stem cells via IFN-γ secretion. Overexpression of ANXA1 was found to suppress this process, suggesting its therapeutic potential in AA treatment. The study highlights ANXA1 as a crucial regulator in the AA-associated immune microenvironment and bone marrow adiposity. KEY POINTS: This study found that ANXA1 is significantly downregulated in AA and provides detailed insights into its critical role in the disease. The study demonstrates the excessive activation of CD8+ T cells in the progression of AA. The research shows that the overexpression of ANXA1 can effectively inhibit the activation of CD8+ T cells. The study confirms that overexpression of ANXA1 reduces the secretion of the cytokine IFN-γ, decreases adipogenesis in bone marrow-derived mesenchymal stem cells and may improve AA symptoms. This research provides new molecular targets for the treatment of AA.
Collapse
Affiliation(s)
- Xia Liu
- Department of Respiratory Intervention, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- JiNan Key Laboratory of Basic and Clinical Translational Research in Radiobiology, Jinan, China
| | - Hui Li
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiang
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| | - Dexiao Kong
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| |
Collapse
|
3
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Ahmad MS, Braoudaki M, Siddiqui SS. Differential expression of ST6GALNAC1 and ST6GALNAC2 and their clinical relevance to colorectal cancer progression. PLoS One 2024; 19:e0311212. [PMID: 39348343 PMCID: PMC11441655 DOI: 10.1371/journal.pone.0311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Colorectal cancer (CRC) has become a significant global health concern and ranks among the leading causes of morbidity and mortality worldwide. Due to its malignant nature, current immunotherapeutic treatments are used to tackle this issue. However, not all patients respond positively to treatment, thereby limiting clinical effectiveness and requiring the identification of novel therapeutic targets to optimise current strategies. The putative ligand of Siglec-15, Sialyl-Tn (STn), is associated with tumour progression and is synthesised by the sialyltransferases ST6GALNAC1 and ST6GALNAC2. However, the deregulation of both sialyltransferases within the literature remain limited, and the involvement of microRNAs (miRNAs) in STn production require further elucidation. Here, we identified miRNAs involved in the regulation of ST6GALNAC1 via a computational approach and further analysis of miRNA binding sites were determined. In silico tools predicted miR-21, miR-30e and miR-26b to regulate the ST6GALNAC1 gene, all of which had shown significant upregulated expression in the tumour cohort. Moreover, each miRNA displayed a high binding affinity towards the seed region of ST6GALNAC1. Additionally, enrichment analysis outlined pathways associated with several cancer hallmarks, including epithelial to mesenchymal transition (EMT) and MYC targets associated with tumour progression. Furthermore, our in silico findings demonstrated that the ST6GALNAC1 expression profile was significantly downregulated in CRC tumours, and its low expression correlated with poor survival outcomes when compared with patient survival data. In comparison to its counterpart, there were no significant differences in the expression of ST6GALNAC2 between normal and malignant tissues, which was further evidenced in our immunohistochemistry analysis. Immunohistochemistry staining highlighted significantly higher expression was more prevalent in normal human tissues with regard to ST6GALNAC1. In conclusion, the integrated in silico analysis highlighted that STn production is not reliant on deregulated sialyltransferase expression in CRC, and ST6GALNAC1 expression is regulated by several oncomirs. We proposed the involvement of other sialyltransferases in the production of the STn antigen and CRC progression via the Siglec-15/Sia axis.
Collapse
Affiliation(s)
- Mohammed Saqif Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
5
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
6
|
Liu R, Yang T, Huang J, Xiao Z, Liu J, Li Z, Tong S. Results from a real-world study: a novel glycosyltransferase risk score for prognosis, tumor microenvironment phenotypes and immunotherapy in bladder cancer. BMC Cancer 2024; 24:947. [PMID: 39095785 PMCID: PMC11297740 DOI: 10.1186/s12885-024-12712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Although immunotherapy shows tremendous potential in the treatment of bladder cancer (BLCA), the overall prognosis and response rates to immunotherapy in BLCA remain suboptimal. METHODS We performed an extensive evaluation of glycosyltransferase expression patterns in BLCA patients by analyzing 210 glycosyltransferase-related genes. Subsequently, we established correlations between these glycosyltransferase patterns, prognosis, and tumor microenvironment (TME) phenotypes. To offer personalized patient assessments, we developed a glycosyltransferase risk score that accurately predicts prognosis, TME phenotypes, and molecular subtypes. Importantly, we developed a RNA-seq cohort, named Xiangya cohort, to validate our results. RESULTS Two distinct patterns of glycosyltransferase expression were identified, corresponding to inflamed and noninflamed TME phenotypes, and demonstrated the potential to predict prognosis. We developed and validated a comprehensive risk score that accurately predicted individual patient prognosis in the TCGA-BLCA cohort. Additionally, we constructed a nomogram that integrated the risk score with several key clinical factors. Importantly, this risk score was successfully validated in external cohorts, including the Xiangya cohort and GSE48075. Furthermore, we discovered a positive correlation between this risk score and tumor-infiltrating lymphocytes in both the TCGA-BLCA and Xiangya cohorts, suggesting that patients with a higher risk score exhibited an inflamed TME phenotype and were more responsive to immunotherapy. Finally, we observed that the high and low risk score groups were consistent with the luminal and basal subtypes of BLCA, respectively, providing further validation of the risk score's role in the TME in terms of molecular subtypes. CONCLUSIONS Glycosyltransferase patterns exhibit distinct TME phenotypes in BLCA. Our comprehensive risk score provides a promising approach for prognostic prediction and assessment of immunotherapy efficacy, offering valuable guidance for precision medicine.
Collapse
Affiliation(s)
- Renyu Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Yang
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jinyu Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinhui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhenghao Li
- Department of Hepatic biliary pancreatic and spleen surgery, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Drąg-Zalesińska M, Kulbacka J. The Immune Response of Cancer Cells in Breast and Gynecologic Neoplasms. Int J Mol Sci 2024; 25:6206. [PMID: 38892394 PMCID: PMC11172873 DOI: 10.3390/ijms25116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer diseases constitute a major health problem which leads to the death of millions of people annually. They are unique among other diseases because cancer cells can perfectly adapt to the environment that they create themselves. This environment is usually highly hostile and for normal cells it would be hugely difficult to survive, however neoplastic cells not only can survive but also manage to proliferate. One of the reasons is that they can alter immunological pathways which allow them to be flexible and change their phenotype to the one needed in specific conditions. The aim of this paper is to describe some of these immunological pathways that play significant roles in gynecologic neoplasms as well as review recent research in this field. It is of high importance to possess extensive knowledge about these processes, as greater understanding leads to creating more specialized therapies which may prove highly effective in the future.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
8
|
Tian H, Yu JL, Chu X, Guan Q, Liu J, Liu Y. Unraveling the role of C1GALT1 in abnormal glycosylation and colorectal cancer progression. Front Oncol 2024; 14:1389713. [PMID: 38699634 PMCID: PMC11063370 DOI: 10.3389/fonc.2024.1389713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
C1GALT1 plays a pivotal role in colorectal cancer (CRC) development and progression through its involvement in various molecular mechanisms. This enzyme is central to the O-glycosylation process, producing tumor-associated carbohydrate antigens (TACA) like Tn and sTn, which are linked to cancer metastasis and poor prognosis. The interaction between C1GALT1 and core 3 synthase is crucial for the synthesis of core 3 O-glycans, essential for gastrointestinal health and mucosal barrier integrity. Aberrations in this pathway can lead to CRC development. Furthermore, C1GALT1's function is significantly influenced by its molecular chaperone, Cosmc, which is necessary for the proper folding of T-synthase. Dysregulation in this complex interaction contributes to abnormal O-glycan regulation, facilitating cancer progression. Moreover, C1GALT1 affects downstream signaling pathways and cellular behaviors, such as the epithelial-mesenchymal transition (EMT), by modifying O-glycans on key receptors like FGFR2, enhancing cancer cell invasiveness and metastatic potential. Additionally, the enzyme's relationship with MUC1, a mucin protein with abnormal glycosylation in CRC, highlights its role in cancer cell immune evasion and metastasis. Given these insights, targeting C1GALT1 presents a promising therapeutic strategy for CRC, necessitating further research to develop targeted inhibitors or activators. Future efforts should also explore C1GALT1's potential as a biomarker for early diagnosis, prognosis, and treatment response monitoring in CRC, alongside investigating combination therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Hong Tian
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Jia-Li Yu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Xiaoli Chu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Qi Guan
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Juan Liu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Ying Liu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| |
Collapse
|
9
|
López-Cortés R, Muinelo-Romay L, Fernández-Briera A, Gil Martín E. High-Throughput Mass Spectrometry Analysis of N-Glycans and Protein Markers after FUT8 Knockdown in the Syngeneic SW480/SW620 Colorectal Cancer Cell Model. J Proteome Res 2024; 23:1379-1398. [PMID: 38507902 PMCID: PMC11002942 DOI: 10.1021/acs.jproteome.3c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Disruption of the glycosylation machinery is a common feature in many types of cancer, and colorectal cancer (CRC) is no exception. Core fucosylation is mediated by the enzyme fucosyltransferase 8 (FucT-8), which catalyzes the addition of α1,6-l-fucose to the innermost GlcNAc residue of N-glycans. We and others have documented the involvement of FucT-8 and core-fucosylated proteins in CRC progression, in which we addressed core fucosylation in the syngeneic CRC model formed by SW480 and SW620 tumor cell lines from the perspective of alterations in their N-glycosylation profile and protein expression as an effect of the knockdown of the FUT8 gene that encodes FucT-8. Using label-free, semiquantitative mass spectrometry (MS) analysis, we found noticeable differences in N-glycosylation patterns in FUT8-knockdown cells, affecting core fucosylation and sialylation, the Hex/HexNAc ratio, and antennarity. Furthermore, stable isotopic labeling of amino acids in cell culture (SILAC)-based proteomic screening detected the alteration of species involved in protein folding, endoplasmic reticulum (ER) and Golgi post-translational stabilization, epithelial polarity, and cellular response to damage and therapy. This data is available via ProteomeXchange with identifier PXD050012. Overall, the results obtained merit further investigation to validate their feasibility as biomarkers of progression and malignization in CRC, as well as their potential usefulness in clinical practice.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Doctoral
Program in Methods and Applications in Life Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Pontevedra (Galicia), Spain
| | - Laura Muinelo-Romay
- Liquid
Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela
(IDIS), CIBERONC, Travesía da Choupana, 15706 Santiago de Compostela, A Coruña
(Galicia), Spain
| | - Almudena Fernández-Briera
- Molecular
Biomarkers, Biomedical Research Centre (CINBIO), Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Pontevedra (Galicia), Spain
| | - Emilio Gil Martín
- Nutrition
and Food Science Group, Department of Biochemistry, Genetics and Immunology,
Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Pontevedra (Galicia), Spain
| |
Collapse
|
10
|
Feng K, Di Y, Han M, Yan W, Wang Y. SORBS1 inhibits epithelial to mesenchymal transition (EMT) of breast cancer cells by regulating PI3K/AKT signaling and macrophage phenotypic polarization. Aging (Albany NY) 2024; 16:4789-4810. [PMID: 38451194 PMCID: PMC10968685 DOI: 10.18632/aging.205632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
This study aimed to explore the regulatory role of SORBS1 in macrophage polarization and the PI3K/AKT signaling pathway, as well as analyze its mechanism in epithelial-mesenchymal transition (EMT) of breast cancer cells. We established SORBS1-overexpressing and knockout cell lines and verified the effects of SORBS1 on cell viability, invasion, and migration by phenotyping experiments and assaying the expression of associated proteins. Furthermore, we established a breast cancer cell and macrophage co-culture system to validate the effect of SORBS1 expression on macrophage polarization and killing of breast cancer cells. Bioinformatics analysis showed that SORBS1 was lowly expressed in breast cancer (BRCA) samples and highly expressed in healthy tissues. Decreased SORBS1 expression was associated with poor prognosis, and the PI3K/AKT signaling pathway was the most significantly enriched pathway. In vitro experiments showed that high expression of SORBS1 inhibited the migration of breast cancer cells, as well as the PI3K/AKT signaling pathway, and blocked EMT of these cells. In addition, SORBS1 induced macrophage polarization to the M1-type and enhanced the killing effect on breast cancer cells in the co-culture system. In conclusion, we successfully verified that SORBS1 inhibits the invasion and migration of breast cancer cells, induces macrophage M1-type polarization, and blocks EMT of breast cancer cells, and it may act by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kai Feng
- Department of Surgical, Hebei Medical University, Shijiazhuang 050011, Hebei, China
- Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao 066600, Hebei, China
| | - Ya Di
- Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao 066600, Hebei, China
| | - Meng Han
- Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao 066600, Hebei, China
| | - Weitao Yan
- Breast Surgery, The First Hospital of Qinhuangdao, Qinhuangdao 066600, Hebei, China
| | - Yimin Wang
- Department of Surgical, Hebei Medical University, Shijiazhuang 050011, Hebei, China
- Department of General Surgery, The First Hospital of Qinhuangdao, Qinhuangdao 066600, Hebei, China
| |
Collapse
|
11
|
You Y, Yang Q. Glycosylation-related genes mediated prognostic signature contribute to prognostic prediction and treatment options in ovarian cancer: based on bulk and single‑cell RNA sequencing data. BMC Cancer 2024; 24:207. [PMID: 38355446 PMCID: PMC10865697 DOI: 10.1186/s12885-024-11908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a complex disease with significant tumor heterogeneity with the worst prognosis and highest mortality among all gynecological cancers. Glycosylation is a specific post-translational modification that plays an important role in tumor progression, immune escape and metastatic spread. The aim of this work was to identify the major glycosylation-related genes (GRGs) in OC and construct an effective GRGs signature to predict prognosis and immunotherapy. METHODS AUCell algorithm was used to identify glycosylation-related genes (GRGs) based on the scRNA-seq and bulk RNA-seq data. An effective GRGs signature was conducted using COX and LASSO regression algorithm. The texting dataset and clinical sample data were used to assessed the accuracy of GRGs signature. We evaluated the differences in immune cell infiltration, enrichment of immune checkpoints, immunotherapy response, and gene mutation status among different risk groups. Finally, RT-qPCR, Wound-healing assay, Transwell assay were performed to verify the effect of the CYBRD1 on OC. RESULTS A total of 1187 GRGs were obtained and a GRGs signature including 16 genes was established. The OC patients were divided into high- and low- risk group based on the median riskscore and the patients in high-risk group have poor outcome. We also found that the patients in low-risk group have higher immune cell infiltration, enrichment of immune checkpoints and immunotherapy response. The results of laboratory test showed that CYBRD1 can promote the invasion, and migration of OC and is closely related to the poor prognosis of OC patients. CONCLUSIONS Our study established a GRGs signature consisting of 16 genes based on the scRNA-seq and bulk RNA-seq data, which provides a new perspective on the prognosis prediction and treatment strategy for OC.
Collapse
Affiliation(s)
- Yue You
- Department of gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Wang H, Luo S, Wu X, Ruan Y, Qiu L, Feng H, Zhu S, You Y, Li M, Yang W, Zhao Y, Tao X, Jiang H. Exploration of glycosyltransferases mutation status in cervical cancer reveals PARP14 as a potential prognostic marker. Glycoconj J 2023; 40:513-522. [PMID: 37650946 PMCID: PMC10638145 DOI: 10.1007/s10719-023-10134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
This study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients. Further verification was conducted through RT-qPCR and immunohistochemistry staining on cervical cancer tissues to confirm the expression of PARP14. The study utilized Kaplan-Meier for survival analysis of cervical cancer patient and found significant mutational abnormalities in GTs. The high frequency mutated gene was identified as PARP14. RT-qPCR revealed significantly higher mRNA expression of PARP14 compared to precancerous tissue. Using IHC combined with Kaplan-Meier,patients in the PARP14 high expression group had a better prognosis than the low expression group. The study identified PARP14 as a frequently mutated gene in cervical cancer and proposed its potential role in diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Wang
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Shen Luo
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Xin Wu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Qiu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Hao Feng
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Shurong Zhu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Yanan You
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Ming Li
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Wenting Yang
- Shanghai Genenexus healthcare technology company, Shanghai, 200433, China
| | - Yanding Zhao
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, 03756, Lebanon, NH, USA
| | - Xiang Tao
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Hua Jiang
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 200090, China.
| |
Collapse
|
13
|
Tsai KY, Chang YJ, Huang CY, Prince GMSH, Chen HA, Makondi PT, Shen YR, Wei PL. Novel heavily fucosylated glycans as a promising therapeutic target in colorectal cancer. J Transl Med 2023; 21:505. [PMID: 37496011 PMCID: PMC10373344 DOI: 10.1186/s12967-023-04363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is highly prevalent and lethal globally, and its prognosis remains unsatisfactory. Drug resistance is regarded as the main cause of treatment failure leading to tumor recurrence and metastasis. The overexpression of fucosylated epitopes, which are usually modifications of glycoproteins, was reported to occur in various epithelial cancers. However, the effects of treatments that target these antigens in colorectal cancer remain unclear. METHODS This study investigated the expression of heavily fucosylated glycans (HFGs) in 30 clinical samples from patients with CRC and other normal human tissues. The complement-dependent cytotoxicity was explored in vitro through treatment with anti-HFG monoclonal antibody (mAb) alone or in combination with chemotherapeutic agents. In vivo inhibitory effects were also examined using a xenograft mouse model. RESULTS Immunohistochemistry staining and western blotting revealed that HFG expression was higher in human colorectal cancer tissues than in normal tissues. In DLD-1 and SW1116 cells, which overexpress fucosylated epitopes, anti-HFG mAb produced observable cytotoxic effects, especially when it was combined with chemotherapeutic agents. The xenograft model also demonstrated that anti-HFG mAb had potent and dose-dependent inhibitory effects on colorectal tumor growth. CONCLUSIONS As a novel cancer antigen, HFGs are a promising treatment target, and the implementation of anti-HFG mAb treatment for CRC warrants further investigation.
Collapse
Affiliation(s)
- Kuei-Yen Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - G M Shazzad Hossain Prince
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-An Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | | | - Ying-Rou Shen
- Research Department, GlycoNex Inc., New Taipei City, 22175, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 252 Wuxing Street, Sinyi District, Taipei, 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
14
|
Navarrete Zamora MB, da Silva TS, da Silva MD, Almeida GHDR, da Silva-Júnior LN, Horvath-Pereira BDO, Baracho Hill AT, Acuña F, Carreira ACO, Barreto RDSN, Sato AS, Miglino MA. Term alpaca placenta glycosylation profile and its correlation with pregnancy maintenance and fetal survival. Front Cell Dev Biol 2023; 11:1193468. [PMID: 37342231 PMCID: PMC10277506 DOI: 10.3389/fcell.2023.1193468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Alpaca is a South American camelid, particularly present in Peruvian highlands, where oxygen concentration and atmospheric pressure are very low. Due to this fact, gestational physiology has adapted to preserve the conceptus' and mother's health. In this context, several cellular and molecular features play an essential role during and at the end of gestation. Structural carbohydrates act on maternal-fetal communication, recognize exogenous molecules, and contribute to placental barrier selectivity. Therefore, this study aimed to characterize the structural carbohydrate profiles that are present in the term alpaca placenta, kept in their natural habitat of around 4,000 m height. For this propose, 12 term alpaca placentas were collected, and the material was obtained at the time of birth from camelids raised naturally in the Peruvian highlands, in the Cusco region. All placenta samples were processed for histological analysis. A lectin histochemical investigation was performed using 13 biotinylated lectins, allowing us to determine the location of carbohydrates and their intensity on a semi-quantitative scale. Our results demonstrated that during term gestation, the epitheliochorial alpaca placenta shows a high presence of carbohydrates, particularly glucose, α-linked mannose, N-acetylglucosamine β (GlcNAc), galactose (αGal), and N-acetylgalactosamine α (GalNAc), present in the trophoblast, amnion epithelium, and mesenchyme, as well as the presence of sialic acid residues and low affinity for fucose. In fetal blood capillaries, the presence of bi- and tri-antennary complex structures and α-linked mannose was predominated. In conclusion, we characterized the glycosylation profile in the term alpaca placenta. Based on our data, compared to those reported in the bibliography, we suggest that these carbohydrates could participate in the labor of these animals that survive in Peruvian extreme environments.
Collapse
Affiliation(s)
- Miluska Beatriz Navarrete Zamora
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, San Borja, Brazil
| | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mônica Duarte da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Amanda Trindade Baracho Hill
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Francisco Acuña
- Facultad de Ciencias Veterinárias, Universidad Nacional de La Plata, Buenos Aires, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centre of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | | | - Alberto Sato Sato
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, San Borja, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Xie X, Kong S, Cao W. Targeting protein glycosylation to regulate inflammation in the respiratory tract: novel diagnostic and therapeutic candidates for chronic respiratory diseases. Front Immunol 2023; 14:1168023. [PMID: 37256139 PMCID: PMC10225578 DOI: 10.3389/fimmu.2023.1168023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Protein glycosylation is a widespread posttranslational modification that can impact the function of proteins. Dysregulated protein glycosylation has been linked to several diseases, including chronic respiratory diseases (CRDs). CRDs pose a significant public health threat globally, affecting the airways and other lung structures. Emerging researches suggest that glycosylation plays a significant role in regulating inflammation associated with CRDs. This review offers an overview of the abnormal glycoenzyme activity and corresponding glycosylation changes involved in various CRDs, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, non-cystic fibrosis bronchiectasis, and lung cancer. Additionally, this review summarizes recent advances in glycomics and glycoproteomics-based protein glycosylation analysis of CRDs. The potential of glycoenzymes and glycoproteins for clinical use in the diagnosis and treatment of CRDs is also discussed.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siyuan Kong
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiqian Cao
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
17
|
Li YY, Wang XY, Li Y, Wang XM, Liao J, Wang YZ, Hong H, Yi W, Chen J. Targeting CD43 optimizes cancer immunotherapy through reinvigorating antitumor immune response in colorectal cancer. Cell Oncol (Dordr) 2023; 46:777-791. [PMID: 36920728 DOI: 10.1007/s13402-023-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common malignancies worldwide, with dramatically increasing incidence and mortality for decades. However, current therapeutic strategies for CRC, including chemotherapies and immunotherapies, have only demonstrated limited efficacy. Here, we report a novel immune molecule, CD43, that can regulate the tumor immune microenvironment (TIME) and serves as a promising target for CRC immunotherapy. METHODS The correlation of CD43 expression with CRC patient prognosis was revealed by public data analysis. CD43 knockout (KO) CRC cell lines were generated by CRISPR-Cas9 technology, and a syngenetic murine CRC model was established to investigate the in vivo function of CD43. The TIME was analyzed via immunohistochemical staining, flow cytometry and RNA-seq. Immune functions were investigated by depletion of immune subsets in vivo and T-cell functional assays in vitro, including T-cell priming, cytotoxicity, and chemotaxis experiments. RESULTS In this study, we found that high expression of CD43 was correlated with poor survival of CRC patients and the limited infiltration of CD8+ T cells in human CRC tissues. Importantly, CD43 expressed on tumor cells, rather than host cells, promoted tumor progression in a syngeneic tumor model. Loss of CD43 facilitated the infiltration of immune cells and immunological memory in the TIME of CRC tumors. Mechanistically, the protumor effect of CD43 depends on T cells, thereby attenuating T-cell-mediated cytotoxicity and cDC1-mediated antigen-specific T-cell activation. Moreover, targeting CD43 synergistically improved PD-L1 blockade immunotherapy for CRC. CONCLUSION Our findings revealed that targeting tumor-intrinsic CD43 could activate the antitumor immune response and provide particular value for optimized cancer immunotherapy by regulating the TIME in CRC patients.
Collapse
Affiliation(s)
- Yi-Yi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Mei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.,Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Ying-Zhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Hong
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Zhongshan School of Medicine, Sun Yat- sen University, Guangzhou, China.
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Barpanda A, Tuckley C, Ray A, Banerjee A, Duttagupta SP, Kantharia C, Srivastava S. A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer. Proteomics Clin Appl 2023; 17:e2200062. [PMID: 36408811 DOI: 10.1002/prca.202200062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer. EXPERIMENTAL DESIGN The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease. RESULTS The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Chetan Kantharia
- Department of surgical gastroenterology at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Sanjeeva Srivastava
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Gu Y, Duan B, Sha J, Zhang R, Fan J, Xu X, Zhao H, Niu X, Geng Z, Gu J, Huang B, Ren S. Serum IgG N-glycans enable early detection and early relapse prediction of colorectal cancer. Int J Cancer 2023; 152:536-547. [PMID: 36121650 DOI: 10.1002/ijc.34298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) develops mainly from colorectal advanced adenomas (AA), which are considered precancerous lesions. Novel early diagnostic biomarkers are urgently needed to distinguish CRC and AA from healthy control (HC). Alternative glycosylation of serum IgG has been shown to be closely associated with CRC. We aimed to explore the potential of IgG N-glycan as biomarkers in the early differential diagnosis of CRC. The study population was strictly matched to the exclusion criteria process. Serum IgG N-glycan profiles were analyzed by a robust and reliable relative quantitative method based on ultra-performance liquid chromatography (UPLC). Relative quantification and classification performance of IgG N-glycans were evaluated by Mann-Whitney U tests and ROC curve based on directly detected and derived glycan traits, respectively. Six and 14 directly detected glycan traits were significantly changed in AA and CRC, respectively, compared with HC. GP1 and GP3 were able to accurately distinguish AA from HC for early precancerous lesions screening. GP4 and GP14 provided a high value in discriminating CRC from HC. A novel combined index named GlycoF, including GP1, GP3, GP4, GP14 and CEA was developed to provide a potential early diagnostic biomarker in discriminating simultaneously AA (AUC = 0.847) and CRC (AUC = 0.844) from HC. GlycoF also demonstrated a superior CRC detection rate across CRC all stages and conspicuous prediction ability of risk of relapse. Serum IgG N-glycans analysis provided powerful early screening biomarkers that can efficiently differentiate CRC and AA from HC.
Collapse
Affiliation(s)
- Yong Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bensong Duan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jichen Sha
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rongrong Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiteng Fan
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijuan Zhao
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoyun Niu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhi Geng
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ben Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shifang Ren
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Scarini JF, de Lima-Souza RA, Lavareze L, Ribeiro de Assis MCF, Damas II, Altemani A, Egal ESA, dos Santos JN, Bello IO, Mariano FV. Heterogeneity and versatility of the extracellular matrix during the transition from pleomorphic adenoma to carcinoma ex pleomorphic adenoma: cumulative findings from basic research and new insights. FRONTIERS IN ORAL HEALTH 2023; 4:942604. [PMID: 37138857 PMCID: PMC10149834 DOI: 10.3389/froh.2023.942604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
Pleomorphic adenoma (PA) is the most common salivary gland tumor, accounting for 50%-60% of these neoplasms. If untreated, 6.2% of PA may undergo malignant transformation to carcinoma ex-pleomorphic adenoma (CXPA). CXPA is a rare and aggressive malignant tumor, whose prevalence represents approximately 3%-6% of all salivary gland tumors. Although the pathogenesis of the PA-CXPA transition remains unclear, CXPA development requires the participation of cellular components and the tumor microenvironment for its progression. The extracellular matrix (ECM) comprises a heterogeneous and versatile network of macromolecules synthesized and secreted by embryonic cells. In the PA-CXPA sequence, ECM is formed by a variety of components including collagen, elastin, fibronectin, laminins, glycosaminoglycans, proteoglycans, and other glycoproteins, mainly secreted by epithelial cells, myoepithelial cells, cancer-associated fibroblasts, immune cells, and endothelial cells. Like in other tumors including breast cancer, ECM changes play an important role in the PA-CXPA sequence. This review summarizes what is currently known about the role of ECM during CXPA development.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Maria Clara Falcão Ribeiro de Assis
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Jean Nunes dos Santos
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Ibrahim Olajide Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Correspondence: Fernanda Viviane Mariano
| |
Collapse
|
21
|
ALG2 inhibits the epithelial-to-mesenchymal transition and stemness of ovarian granulosa cells through the Wnt/β-catenin signaling pathway in polycystic ovary syndrome. Reprod Biol 2022; 22:100706. [DOI: 10.1016/j.repbio.2022.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
22
|
Alharbi KS, Javed Shaikh MA, Afzal O, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Singh SK, Dua K, Gupta G. An overview of epithelial growth factor receptor (EGFR) inhibitors in cancer therapy. Chem Biol Interact 2022; 366:110108. [PMID: 36027944 DOI: 10.1016/j.cbi.2022.110108] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/28/2022]
Abstract
Epithelial growth factor receptor (EGFR), a transmembrane receptor on the cell surface, carries extracellular messages into the cell and alters the activity of the nucleus through tyrosine signalling. EGFR-targeted treatments have influenced the new era of precision oncology throughout the last few decades. Despite significant progress, long-term remission from solid tumours is still a distant goal for many oncologists. There are several methods by which tumour cells alter the activity of this protein in solid tumours. EGFR-related oncogenic pathways, resistance mechanisms, and novel avenues to suppress tumour development and metastatic spread were discovered in clinical specimens using preclinical models (cell cultures, xenografts, mouse models), which were then validated in those specimens. EGFR has been implicated in the onset and advancement of a variety of cancers, according to research. An overview of EGFR's structural anatomy and physiology, its role in cancers, and clinical studies that target EGFR in various tumours are included in this review.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
23
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
24
|
Yamamoto D, Sasaki K, Kosaka T, Oya M, Sato T. Functional analysis of GCNT3 for cell migration and EMT of castration-resistant prostate cancer cells. Glycobiology 2022; 32:897-908. [PMID: 35867813 DOI: 10.1093/glycob/cwac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a malignant tumor that is resistant to androgen deprivation therapy. Treatments for CRPC are limited, and no diagnostic markers are currently available. O-glycans are known to play an important role in cell proliferation, migration, invasion, and metastasis of cancer cells. However, the differences in the O-glycan expression profiles for normal prostate cancer (PCa) cells compared to CRPC cells have not yet been investigated. In this study, the saccharide primer method was employed to analyze the O-glycans expressed in CRPC cells. Expression levels of core 4-type O-glycans were significantly increased in CRPC cells. Furthermore, the expression level of N-Acetylglucosaminyltransferase 3 (GCNT3), a core 4-type O-glycan synthase gene, was increased in CRPC cells. The expression of core 4-type O-glycans and GCNT3 was presumed to be regulated by androgen deprivation. GCNT3 knockdown induced cell migration and epithelial-mesenchymal transition (EMT). These observations elucidate the mechanism of acquisition of castration resistance in PCa and offer new possibilities for the development of diagnostic markers and therapeutic targets in the treatment of PCa.
Collapse
Affiliation(s)
- Daiki Yamamoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Katsumasa Sasaki
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
25
|
β-1,4-Galactosyltransferase-V colorectal cancer biomarker immunosensor with label-free electrochemical detection. Talanta 2022; 243:123337. [DOI: 10.1016/j.talanta.2022.123337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022]
|
26
|
Kobori T, Tanaka C, Tameishi M, Urashima Y, Ito T, Obata T. Role of Ezrin/Radixin/Moesin in the Surface Localization of Programmed Cell Death Ligand-1 in Human Colon Adenocarcinoma LS180 Cells. Pharmaceuticals (Basel) 2021; 14:ph14090864. [PMID: 34577564 PMCID: PMC8467328 DOI: 10.3390/ph14090864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Programmed cell death ligand-1 (PD-L1), an immune checkpoint protein highly expressed on the cell surface in various cancer cell types, binds to programmed cell death-1 (PD-1), leading to T-cell dysfunction and tumor survival. Despite clinical successes of PD-1/PD-L1 blockade therapies, patients with colorectal cancer (CRC) receive little benefit because most cases respond poorly. Because high PD-L1 expression is associated with immune evasion and poor prognosis in CRC patients, identifying potential modulators for the plasma membrane localization of PD-L1 may represent a novel therapeutic strategy for enhancing the efficacy of PD-1/PD-L1 blockade therapies. Here, we investigated whether PD-L1 expression in human colorectal adenocarcinoma cells (LS180) is affected by ezrin/radixin/moesin (ERM), functioning as scaffold proteins that crosslink plasma membrane proteins with the actin cytoskeleton. We observed colocalization of PD-L1 with all three ERM proteins in the plasma membrane and detected interactions involving PD-L1, the three ERM proteins, and the actin cytoskeleton. Furthermore, gene silencing of ezrin and radixin, but not of moesin, substantially decreased the expression of PD-L1 on the cell surface without affecting its mRNA level. Thus, in LS180 cells, ezrin and radixin may function as scaffold proteins mediating the plasma membrane localization of PD-L1, possibly by post-translational modification.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan;
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; (T.K.); (C.T.); (M.T.); (Y.U.)
- Correspondence: ; Tel.: +81-721-24-9371
| |
Collapse
|