1
|
Koda Y, Nagasaki Y. Metabolic dysfunction-associated steatohepatitis treated by poly(ethylene glycol)-block-poly(cysteine) block copolymer-based self-assembling antioxidant nanoparticles. J Control Release 2024; 370:367-378. [PMID: 38692439 DOI: 10.1016/j.jconrel.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Non-alcoholic steatohepatitis (NASH), now known as metabolic dysfunction-associated steatohepatitis (MASH), involves oxidative stress caused by the overproduction of reactive oxygen species (ROS). Small-molecule antioxidants have not been approved for antioxidant chemotherapy because of severe adverse effects that collapse redox homeostasis, even in healthy tissues. To overcome these disadvantages, we have been developing poly(ethylene glycol)-block-poly(cysteine) (PEG-block-PCys)-based self-assembling polymer nanoparticles (NanoCyses), releasing Cys after in vivo degradation by endogenous enzymes, to obtain antioxidant effects without adverse effects. However, a comprehensive investigation of the effects of polymer design on therapeutic outcomes has not yet been conducted to develop our NanoCys system for antioxidant chemotherapy. In this study, we synthesized different poly(L-cysteine) (PCys) chains whose sulfanyl groups were protected by tert-butyl thiol (StBu) and butyryl (Bu) groups to change the reactivity of the side chains, affording NanoCys(SS) and NanoCys(Bu), respectively. To elucidate the importance of the polymer design, these NanoCyses were orally administered to MASH model mice as a model of oxidative stress-related diseases. Consequently, the acyl-protective NanoCys(Bu) significantly suppressed hepatic lipid accumulation and oxidative stress compared to NanoCys(SS). Furthermore, we substantiated that shorter PCys were much better than longer PCys for therapeutic outcomes and the effects related to the liberation properties of Cys from these nanoparticles. Owing to its antioxidant functions, NanoCyses also significantly attenuated hepatic inflammation and fibrosis in the MASH mouse model.
Collapse
Affiliation(s)
- Yuta Koda
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation, Isotope and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku Tokyo 113-0033, Japan; High-value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
2
|
Guo Y, Gao Z, LaGory EL, Kristin LW, Gupte J, Gong Y, Rardin MJ, Liu T, Nguyen TT, Long J, Hsu YH, Murray JK, Lade J, Jackson S, Zhang J. Liver-specific mitochondrial amidoxime-reducing component 1 (Mtarc1) knockdown protects the liver from diet-induced MASH in multiple mouse models. Hepatol Commun 2024; 8:e0419. [PMID: 38696369 PMCID: PMC11068142 DOI: 10.1097/hc9.0000000000000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.
Collapse
Affiliation(s)
- Yuanjun Guo
- Research Biomarkers, Amgen Research, South San Francisco, California, USA
| | - Zhengyu Gao
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Edward L. LaGory
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Lewis Wilson Kristin
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Jamila Gupte
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Yan Gong
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Matthew J. Rardin
- Discovery Technology Platforms, Amgen Research, South San Francisco, California, USA
| | - Tongyu Liu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Thong T. Nguyen
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Jason Long
- RNA Therapeutics, Amgen Research, One Amgen Center Drive, Thousand Oaks, California, USA
| | - Yi-Hsiang Hsu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Cambridge, Massachusetts, USA
| | - Justin K. Murray
- RNA Therapeutics, Amgen Research, One Amgen Center Drive, Thousand Oaks, California, USA
| | - Julie Lade
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Simon Jackson
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Jun Zhang
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
3
|
Yang J, Dai M, Wang Y, Yan Z, Mao S, Liu A, Lu C. A CDAHFD-induced mouse model mimicking human NASH in the metabolism of hepatic phosphatidylcholines and acyl carnitines. Food Funct 2024; 15:2982-2995. [PMID: 38411344 DOI: 10.1039/d3fo05111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of a cluster of conditions associated with lipid metabolism disorders. Ideal animal models mimicking the human NASH need to be explored to better understand the pathogenesis. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has recently been used to induce the NASH model, but the advantages are not established. NASH models were induced using the well-known traditional methionine- and choline-deficient (MCD) diet for 5 weeks and the recently used CDAHFD for 3 weeks. Liver phenotypes were analyzed to evaluate the differences in markers related to NASH. Lipidomics and metabolism analyses were used to investigate the effects of dietary regimens on the lipidome of the liver. The CDAHFD induced stronger NASH responses than the MCD, including lipid deposition, liver injury, inflammation, bile acid overload and hepatocyte proliferation. A significant difference in the hepatic lipidome was revealed between the CDAHFD and MCD-induced NASH models. In particular, the CDAHFD reduced the hepatic levels of phosphatidylcholines (PCs) and acylcarnitines (ACs), which was supported by the metabolism analysis and in line with the tendency of human NASH. Pathologically, the CDAHFD could effectively induce a more human-like NASH model over the traditional MCD. The hepatic PCs, ACs and their metabolism in CDAHFD-treated mice were down-regulated, similar to those in human NASH.
Collapse
Affiliation(s)
- Jie Yang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Manyun Dai
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ying Wang
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Zheng Yan
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shuqi Mao
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Aiming Liu
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Caide Lu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
4
|
Kumazoe M, Miyamoto E, Oka C, Kondo M, Yoshitomi R, Onda H, Shimada Y, Fujimura Y, Tachibana H. miR-12135 ameliorates liver fibrosis accompanied with the downregulation of integrin subunit alpha 11. iScience 2024; 27:108730. [PMID: 38235326 PMCID: PMC10792239 DOI: 10.1016/j.isci.2023.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/26/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Cirrhosis is becoming one of the most common diseases worldwide. Abnormal upregulation of transforming growth factor β (TGF-β) signaling plays a pivotal role in the excess activation of hepatic stellate cells. However, an efficient countermeasure against abnormal hepatic stellate cell activation is yet to be established because TGF-β signaling is involved in several biological processes. Herein, we demonstrated the antifibrotic effect of miR-12135, a microRNA with unknown function upregulated by isoflavone. Comprehensive transcriptome assay demonstrated that miR-12135 suppressed Integrin Subunit Alpha 11 (ITGA11) and that ITGA11 expression is correlated with alpha smooth muscle actin expression in patients with cirrhosis. miR-12135 suppressed the expression level of ITGA11 and liver fibrosis. Importantly, ITGA11 is overexpressed in activated hepatic stellate cells, whereas ITGA11 knockout mice are viable and fertile. In conclusions, the miR-12135/ITGA11 axis can be an ideal therapeutic target to suppress fibrosis by precisely targeting abnormally upregulated TGF-β signaling in hepatic stellate cells.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Emi Miyamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chihiro Oka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miyuki Kondo
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Liu Z, Louwe PA, Scott CL. Studying Macrophages in the Murine Steatotic Liver Using Flow Cytometry and Confocal Microscopy. Methods Mol Biol 2024; 2713:207-230. [PMID: 37639126 DOI: 10.1007/978-1-0716-3437-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The study of macrophage functions in the context of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction associated steatohepatitis (MASH) has been hampered by the fact that until recently all macrophages in the liver were thought to be Kupffer cells, the resident macrophages of the liver. With the advent of single-cell technologies, it is now clear that the steatotic liver harbors many distinct populations of macrophages, likely each with their own unique functions as well as subsets of monocytes and dendritic cells which can be difficult to discriminate from one another. Here, we detail the protocols we utilize to (i) induce MASLD/MASH in mice, (ii) isolate cells from the steatotic liver, and (iii) describe reliable gating strategies, which can be used to identify the different subsets of myeloid cells. Finally, we also discuss the issue of increased autofluorescence in the steatotic liver and the techniques we use to minimize this both for flow cytometry and confocal microscopy analyses.
Collapse
Affiliation(s)
- Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Pieter A Louwe
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium.
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland.
| |
Collapse
|
6
|
Seo J, Kwon D, Kim SH, Byun MR, Lee YH, Jung YS. Role of autophagy in betaine-promoted hepatoprotection against non-alcoholic fatty liver disease in mice. Curr Res Food Sci 2023; 8:100663. [PMID: 38222825 PMCID: PMC10787235 DOI: 10.1016/j.crfs.2023.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Betaine, a compound found in plants and sea foods, is known to be beneficial against non-alcoholic fatty liver disease (NAFLD), but its hepatoprotective and anti-steatogenic mechanisms have been not fully understood. In the present study, we investigated the mechanisms underlying betaine-mediated alleviation of NAFLD induced by a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) in mice, with special focus on the contribution of betaine-stimulated autophagy to NAFLD prevention. Male ICR mice were fed a CDAHFD with or without betaine (0.2-1% in drinking water) for 1 week. Betaine ameliorated the CDAHFD-induced fatty liver by restoring sulfur amino acid (SAA)-related metabolites, such as S-adenosylmethionine and homocysteine, and the phosphorylation of AMPK and ACC. In addition, it reduced the CDAHFD-induced ER stress (BiP, ATF6, and CHOP) and apoptosis (Bax, cleaved caspase-3, and cleaved PARP); however, it induced autophagy (LC3II/I and p62) which was downregulated by CDAHFD. To determine the role of autophagy in the improvement of NAFLD, chloroquine (CQ), an autophagy inhibitor, was injected into the mice fed a CDAHFD and betaine (0.5 % in drinking water). CQ did not affect SAA metabolism but reduced the beneficial effects of betaine as shown by the increases of hepatic lipids, ER stress, and apoptosis. Notably, the betaine-induced improvements in lipid metabolism determined by protein levels of p-AMPK, p-ACC, PPARα, and ACS1, were reversed by CQ. Thus, the results of this study suggest that the activation of autophagy is an important upstream mechanism for the inhibition of steatosis, ER stress, and apoptosis by betaine in NAFLD.
Collapse
Affiliation(s)
- Jinuk Seo
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
7
|
Ke X, Hu H, Peng Q, Ying H, Chu X. USP33 promotes nonalcoholic fatty acid disease-associated fibrosis in gerbils via the c-myc signaling. Biochem Biophys Res Commun 2023; 669:68-76. [PMID: 37267862 DOI: 10.1016/j.bbrc.2023.05.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Nonalcoholic fatty acid disease (NAFLD) is a common complication of obesity associated with liver fibrosis. The underlying molecular mechanisms involved in the progression from normal to fibrosis remain unclear. Liver tissues from the liver fibrosis model identified the USP33 gene as a key gene in NAFLD-associated fibrosis. USP33 knockdown inhibited hepatic stellate cell activation and glycolysis in gerbils with NAFLD-associated fibrosis. Conversely, overexpression of USP33 caused a contrast function on hepatic stellate cell activation and glycolysis activation, which was inhibited by c-Myc inhibitor 10058-F4. The copy number of short-chain fatty acids-producing bacterium Alistipes sp. AL-1, Mucispirillum schaedleri, Helicobacter hepaticus in the feces, and the total bile acid level in serum were higher in gerbils with NAFLD-associated fibrosis. Bile acid promoted USP33 expression and inhibiting its receptor reversed hepatic stellate cell activation in gerbils with NAFLD-associated fibrosis. These results suggest that the expression of USP33, an important deubiquitinating enzyme, is increased in NAFLD fibrosis. These data also point to hepatic stellate cells as a key cell type that may respond to liver fibrosis via USP33-induced cell activation and glycolysis.
Collapse
Affiliation(s)
- Xianfu Ke
- Hangzhou Medical College, Zhejiang, China.
| | - Huiying Hu
- Hangzhou Medical College, Zhejiang, China.
| | | | | | | |
Collapse
|
8
|
Park SY, Kim MW, Kang JH, Jung HJ, Hwang JH, Yang SJ, Woo JK, Jeon Y, Lee H, Yoon YS, Seong JK, Oh SH. Novel NF-κB reporter mouse for the non-invasive monitoring of inflammatory diseases. Sci Rep 2023; 13:3556. [PMID: 36864088 PMCID: PMC9981691 DOI: 10.1038/s41598-023-29689-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
Bioluminescence imaging is useful for non-invasively monitoring inflammatory reactions associated with disease progression, and since NF-κB is a pivotal transcription factor that alters expressions of inflammatory genes, we generated novel NF-κB luciferase reporter (NF-κB-Luc) mice to understand the dynamics of inflammatory responses in whole body, and also in various type of cells by crossing NF-κB-Luc mice with cell-type specific Cre expressing mice (NF-κB-Luc:[Cre]). Bioluminescence intensity was significantly increased in NF-κB-Luc (NKL) mice exposed to inflammatory stimuli (PMA or LPS). Crossing NF-κB-Luc mice with Alb-cre mice or Lyz-cre mice generated NF-κB-Luc:Alb (NKLA) and NF-κB-Luc:Lyz2 (NKLL) mice, respectively. NKLA and NKLL mice showed enhanced bioluminescence in liver and macrophages, respectively. To confirm that our reporter mice could be utilized for the non-invasive monitoring of inflammation in preclinical models, we conducted a DSS-induced colitis model and a CDAHFD-induced NASH model in our reporter mice. In both models, our reporter mice reflected the development of these diseases over time. In conclusion, we believe that our novel reporter mouse can be utilized as a non-invasive monitoring platform for inflammatory diseases.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Soo Jung Yang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jong Kyu Woo
- Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yeo Sung Yoon
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Wang C, Li MX, Li YD, Li YP. Bloodletting Acupuncture at Jing-Well Points Alleviates Myocardial Injury in Acute Altitude Hypoxic Rats by Activating HIF-1α/BNIP3 Signaling-Mediated Mitochondrial Autophagy and Decreasing Oxidative Stress. Chin J Integr Med 2023; 29:170-178. [PMID: 36484920 DOI: 10.1007/s11655-022-3626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat. METHODS Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling. RESULTS BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH. CONCLUSION BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.
Collapse
Affiliation(s)
- Chao Wang
- Department of Traditional Chinese Medicine, Medical Institute of Qinghai University, Xining, 810000, China
| | - Meng-Xin Li
- Department of Traditional Chinese Medicine, Medical Institute of Qinghai University, Xining, 810000, China
| | - Yun-di Li
- Department of Traditional Chinese Medicine, Medical Institute of Qinghai University, Xining, 810000, China
| | - Yong-Ping Li
- Department of Traditional Chinese Medicine, Medical Institute of Qinghai University, Xining, 810000, China.
| |
Collapse
|
10
|
Formyl peptide receptor 2 is an emerging modulator of inflammation in the liver. Exp Mol Med 2023; 55:325-332. [PMID: 36750693 PMCID: PMC9981720 DOI: 10.1038/s12276-023-00941-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 02/09/2023] Open
Abstract
Formyl peptide receptors (FPRs), which are seven-membrane G-protein coupled receptors, recognize chemotactic signals to protect hosts from pathogenic infections and mediate inflammatory responses in the body. There are three isoforms of FPRs in humans-FPR1, FPR2, and FPR3-and they bind to N-formyl peptides, except FPR3, and to various endogenous agonists. Among FPR family members, FPR2 has a lower affinity for N-formyl peptides than FPR1 and binds with a wide range of endogenous or exogenous agonists. Thus, FPR2 is considered the most ambiguous member. Accumulating evidence has shown that FPR2 is involved in the host's defense against bacterial infection and inflammation in liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, and liver cancer, suggesting the pathophysiological relevance of FPR2 to the liver. However, FPR2 has been shown to promote or suppress inflammation, depending on the type of FPR2-expressing cell and FPR2-bound ligands in the liver. Therefore, it is important to understand FPR2's function per se and to elucidate the mechanism underlying immunomodulation initiated by ligand-activated FPR2 before suggesting FPR2 as a novel therapeutic agent for liver diseases. In this review, up-to-date knowledge of FPR2, with general information on the FPR family, is provided. We shed light on the dual action of FPR2 in the liver and discuss the hepatoprotective roles of FPR2 itself and FPR2 agonists in mediating anti-inflammatory responses.
Collapse
|
11
|
Qiu H, Song E, Hu Y, Li T, Ku KC, Wang C, Cheung BMY, Cheong LY, Wang Q, Wu X, Hoo RLC, Wang Y, Xu A. Hepatocyte-Secreted Autotaxin Exacerbates Nonalcoholic Fatty Liver Disease Through Autocrine Inhibition of the PPARα/FGF21 Axis. Cell Mol Gastroenterol Hepatol 2022; 14:1003-1023. [PMID: 35931383 PMCID: PMC9490100 DOI: 10.1016/j.jcmgh.2022.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS The prevalence of nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions globally as a result of the rapid increase in obesity. However, there is no Food and Drug Administration-approved pharmacotherapy available for NAFLD. This study investigated the role of autotaxin, a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidic acid (LPA), in the pathogenesis of NAFLD and to explore whether genetic or pharmacologic interventions targeting autotaxin ameliorate NAFLD. METHODS The clinical association of autotaxin with the severity of NAFLD was analyzed in 125 liver biopsy-proven NAFLD patients. C57BL/6N mice or fibroblast growth factor 21 (FGF21)-null mice were fed a high-fat diet or a choline-deficient diet to investigate the role of the autotaxin-FGF21 axis in NAFLD development by hepatic knockdown and antibody neutralization. Huh7 cells were used to investigate the autocrine effects of autotaxin. RESULTS Serum autotaxin levels were associated positively with histologic scores and NAFLD severity. Hepatocytes, but not adipocytes, were the major contributor to increased circulating autotaxin in both patients and mouse models with NAFLD. In mice, knocking-down hepatic autotaxin or treatment with a neutralizing antibody against autotaxin significantly reduced high-fat diet-induced NAFLD and high fat- and choline-deficient diet-induced nonalcoholic steatohepatitis and fibrosis, accompanied by a marked increase of serum FGF21. Mechanistically, autotaxin inhibited the transcriptional activity of peroxisome proliferator-activated receptor α through LPA-induced activation of extracellular signal-regulated kinas, thereby leading to suppression of hepatic FGF21 production. The therapeutic benefit of anti-autotaxin neutralizing antibody against NAFLD was abrogated in FGF21-null mice. CONCLUSIONS Liver-secreted autotaxin acts in an autocrine manner to exacerbate NAFLD through LPA-induced suppression of the peroxisome proliferator-activated receptor α-FGF21 axis and is a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Han Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tengfei Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Ching Ku
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernard M Y Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Czernuszewicz TJ, Aji AM, Moore CJ, Montgomery SA, Velasco B, Torres G, Anand KS, Johnson KA, Deal AM, Zukić D, McCormick M, Schnabl B, Gallippi CM, Dayton PA, Gessner RC. Development of a Robotic Shear Wave Elastography System for Noninvasive Staging of Liver Disease in Murine Models. Hepatol Commun 2022; 6:1827-1839. [PMID: 35202510 PMCID: PMC9234684 DOI: 10.1002/hep4.1912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shear wave elastography (SWE) is an ultrasound-based stiffness quantification technology that is used for noninvasive liver fibrosis assessment. However, despite widescale clinical adoption, SWE is largely unused by preclinical researchers and drug developers for studies of liver disease progression in small animal models due to significant experimental, technical, and reproducibility challenges. Therefore, the aim of this work was to develop a tool designed specifically for assessing liver stiffness and echogenicity in small animals to better enable longitudinal preclinical studies. A high-frequency linear array transducer (12-24 MHz) was integrated into a robotic small animal ultrasound system (Vega; SonoVol, Inc., Durham, NC) to perform liver stiffness and echogenicity measurements in three dimensions. The instrument was validated with tissue-mimicking phantoms and a mouse model of nonalcoholic steatohepatitis. Female C57BL/6J mice (n = 40) were placed on choline-deficient, L-amino acid-defined, high-fat diet and imaged longitudinally for 15 weeks. A subset was sacrificed after each imaging timepoint (n = 5) for histological validation, and analyses of receiver operating characteristic (ROC) curves were performed. Results demonstrated that robotic measurements of echogenicity and stiffness were most strongly correlated with macrovesicular steatosis (R2 = 0.891) and fibrosis (R2 = 0.839), respectively. For diagnostic classification of fibrosis (Ishak score), areas under ROC (AUROCs) curves were 0.969 for ≥Ishak1, 0.984 for ≥Ishak2, 0.980 for ≥Ishak3, and 0.969 for ≥Ishak4. For classification of macrovesicular steatosis (S-score), AUROCs were 1.00 for ≥S2 and 0.997 for ≥S3. Average scanning and analysis time was <5 minutes/liver. Conclusion: Robotic SWE in small animals is feasible and sensitive to small changes in liver disease state, facilitating in vivo staging of rodent liver disease with minimal sonographic expertise.
Collapse
Affiliation(s)
- Tomasz J Czernuszewicz
- SonoVol, Inc.DurhamNCUSA.,Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel HillNCUSA
| | | | | | - Stephanie A Montgomery
- Department of Pathology and Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
| | - Brian Velasco
- Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel HillNCUSA
| | - Gabriela Torres
- Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel HillNCUSA
| | - Keerthi S Anand
- Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel HillNCUSA
| | - Kennita A Johnson
- Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel HillNCUSA
| | - Allison M Deal
- Biostatistics CoreLineberger Cancer CenterUniversity of North CarolinaChapel HillNCUSA
| | | | | | - Bernd Schnabl
- 19979Department of MedicineUniversity of California San DiegoLa JollaCAUSA.,19979Department of MedicineVA San Diego Healthcare SystemSan DiegoCAUSA
| | - Caterina M Gallippi
- Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel HillNCUSA
| | - Paul A Dayton
- Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel HillNCUSA
| | | |
Collapse
|
13
|
Tamai S, Fujita SI, Komine R, Kanki Y, Aoki K, Watanabe K, Takekoshi K, Sugasawa T. Acute cold stress induces transient MuRF1 upregulation in the skeletal muscle of zebrafish. Biochem Biophys Res Commun 2022; 608:59-65. [PMID: 35390673 DOI: 10.1016/j.bbrc.2022.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022]
Abstract
Cryotherapy is one of the most common treatments for trauma or fatigue in the field of sports medicine. However, the molecular biological effects of acute cold exposure on skeletal muscle remain unclear. Therefore, we used zebrafish, which have recently been utilized as an animal model for skeletal muscle, to comprehensively investigate and selectively clarify the time-course changes induced by cryotherapy. Zebrafish were exposed intermittently to cold stimulation three times for 15 min each. Thereafter, skeletal muscle samples were collected after 15 min and 1, 2, 4, and 6 h. mRNA sequencing revealed the involvement of trim63a, fbxo32, fbxo30a, and klhl38b in "protein ubiquitination" from the top 10 most upregulated genes. Subsequently, we examined the time-course changes of the four genes by quantitative PCR, and their expression peaked 2 h after cryotherapy and returned to baseline after 6 h. Moreover, the proteins encoded by trim63a and fbxo32 (muscle-specific RING finger protein 1 [MuRF1] and muscle atrophy F-box, respectively), which are known to be major genes encoding E3 ubiquitin ligases, were examined by western blotting, and MuRF1 expression displayed similar temporal changes as trim63a expression. These findings suggest that acute cold exposure transiently upregulates E3 ubiquitin ligases, especially MuRF1; thus, cryotherapy may contribute to the treatment of trauma or fatigue by promoting protein processing.
Collapse
Affiliation(s)
- Shinsuke Tamai
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shin-Ichiro Fujita
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ritsuko Komine
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuharu Kanki
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kai Aoki
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Takekoshi
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Department of Sports Medicine Analysis, Open Facility Network Office, Research Facility Center for Science and Technology, University of Tsukuba, Japan.
| |
Collapse
|
14
|
Chen JW, Ma PW, Yuan H, Wang WL, Lu PH, Ding XR, Lun YQ, Yang Q, Lu LJ. mito-TEMPO Attenuates Oxidative Stress and Mitochondrial Dysfunction in Noise-Induced Hearing Loss via Maintaining TFAM-mtDNA Interaction and Mitochondrial Biogenesis. Front Cell Neurosci 2022; 16:803718. [PMID: 35210991 PMCID: PMC8861273 DOI: 10.3389/fncel.2022.803718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The excessive generation of reactive oxygen species (ROS) and mitochondrial damage have been widely reported in noise-induced hearing loss (NIHL). However, the specific mechanism of noise-induced mitochondrial damage remains largely unclear. In this study, we showed that acoustic trauma caused oxidative damage to mitochondrial DNA (mtDNA), leading to the reduction of mtDNA content, mitochondrial gene expression and ATP level in rat cochleae. The expression level and mtDNA-binding function of mitochondrial transcription factor A (TFAM) were impaired following acoustic trauma without affecting the upstream PGC-1α and NRF-1. The mitochondria-target antioxidant mito-TEMPO (MT) was demonstrated to enter the inner ear after the systemic administration. MT treatment significantly alleviated noise-induced auditory threshold shifts 3d and 14d after noise exposure. Furthermore, MT significantly reduced outer hair cell (OHC) loss, cochlear ribbon synapse loss, and auditory nerve fiber (ANF) degeneration after the noise exposure. In addition, we found that MT treatment effectively attenuated noise-induced cochlear oxidative stress and mtDNA damage, as indicated by DHE, 4-HNE, and 8-OHdG. MT treatment also improved mitochondrial biogenesis, ATP generation, and TFAM-mtDNA interaction in the cochlea. These findings suggest that MT has protective effects against NIHL via maintaining TFAM-mtDNA interaction and mitochondrial biogenesis based on its ROS scavenging capacity.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Kawashita E, Ozaki T, Ishihara K, Kashiwada C, Akiba S. Endothelial group IVA phospholipase A2 promotes hepatic fibrosis with sinusoidal capillarization in the early stage of a non-alcoholic steatohepatitis in mice. Life Sci 2022; 294:120355. [DOI: 10.1016/j.lfs.2022.120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|