1
|
Shimomura-Kuroki J, Tsuneki M, Ida-Yonemochi H, Seino Y, Yamamoto K, Hirao Y, Yamamoto T, Ohshima H. Establishing protein expression profiles involved in tooth development using a proteomic approach. Odontology 2023; 111:839-853. [PMID: 36792749 DOI: 10.1007/s10266-023-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection. Mass spectrometry of the resulting proteins was carried out, and three types of highly expressed proteins [ATP synthase subunit beta (ATP5B), receptor of activated protein C kinase 1 (RACK1), and calreticulin (CALR)] were selected for immunohistochemical analysis. The expression profiles of these proteins were subsequently evaluated during all stages of amelogenesis using the continuously growing incisors of 3-week-old male ICR mice. Interestingly, these three proteins were specifically expressed depending on the stage of amelogenesis. RACK1 was highly expressed in dental epithelial and mesenchymal tissues during the proliferation and differentiation stages of odontogenesis, except for the pigmentation stage, whereas ATP5B and CALR immunoreactivity was weak in the enamel organ during the early stages, but became intense during the maturation and pigmentation stages, although the timing of the increased protein expression was different between the two. Overall, RACK1 plays an important role in maintaining the cell proliferation and differentiation in the apical end of incisors. In contrast, ATP5B and CALR are involved in the transport of minerals and the removal of organic materials as well as matrix deposition for CALR.
Collapse
Affiliation(s)
- Junko Shimomura-Kuroki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan.
| | - Masayuki Tsuneki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medmain Research, Medmain Inc., 2-4-5-104, Akasaka, Chuo-Ku, Fukuoka, 810-0042, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Yoshitoshi Hirao
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| |
Collapse
|
2
|
Silva A, Lima L, Morais A, Lienou L, Watanabe Y, Joaquim D, Morais S, Alves D, Pereira A, Santos A, Alves B, Padilha D, Gastal E, Figueiredo J. Oocyte in vitro maturation with eugenol improves the medium antioxidant capacity and total cell number per blastocyst. Theriogenology 2022; 192:109-115. [DOI: 10.1016/j.theriogenology.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
3
|
Hu Y, Rehawi G, Moyon L, Gerstner N, Ogris C, Knauer-Arloth J, Bittner F, Marsico A, Mueller NS. Network Embedding Across Multiple Tissues and Data Modalities Elucidates the Context of Host Factors Important for COVID-19 Infection. Front Genet 2022; 13:909714. [PMID: 35903362 PMCID: PMC9315940 DOI: 10.3389/fgene.2022.909714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 is a heterogeneous disease caused by SARS-CoV-2. Aside from infections of the lungs, the disease can spread throughout the body and damage many other tissues, leading to multiorgan failure in severe cases. The highly variable symptom severity is influenced by genetic predispositions and preexisting diseases which have not been investigated in a large-scale multimodal manner. We present a holistic analysis framework, setting previously reported COVID-19 genes in context with prepandemic data, such as gene expression patterns across multiple tissues, polygenetic predispositions, and patient diseases, which are putative comorbidities of COVID-19. First, we generate a multimodal network using the prior-based network inference method KiMONo. We then embed the network to generate a meaningful lower-dimensional representation of the data. The input data are obtained via the Genotype-Tissue Expression project (GTEx), containing expression data from a range of tissues with genomic and phenotypic information of over 900 patients and 50 tissues. The generated network consists of nodes, that is, genes and polygenic risk scores (PRS) for several diseases/phenotypes, as well as for COVID-19 severity and hospitalization, and links between them if they are statistically associated in a regularized linear model by feature selection. Applying network embedding on the generated multimodal network allows us to perform efficient network analysis by identifying nodes close by in a lower-dimensional space that correspond to entities which are statistically linked. By determining the similarity between COVID-19 genes and other nodes through embedding, we identify disease associations to tissues, like the brain and gut. We also find strong associations between COVID-19 genes and various diseases such as ischemic heart disease, cerebrovascular disease, and hypertension. Moreover, we find evidence linking PTPN6 to a range of comorbidities along with the genetic predisposition of COVID-19, suggesting that this kinase is a central player in severe cases of COVID-19. In conclusion, our holistic network inference coupled with network embedding of multimodal data enables the contextualization of COVID-19-associated genes with respect to tissues, disease states, and genetic risk factors. Such contextualization can be exploited to further elucidate the biological importance of known and novel genes for severity of the disease in patients.
Collapse
Affiliation(s)
- Yue Hu
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Informatics 12 Chair of Bioinformatics, Technical University Munich, Garching, Germany
| | - Ghalia Rehawi
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Translational Research in Psychiatry, MaxPlanck Institute of Psychiatry, Munich, Germany
| | - Lambert Moyon
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
| | - Nathalie Gerstner
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Translational Research in Psychiatry, MaxPlanck Institute of Psychiatry, Munich, Germany
| | - Christoph Ogris
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
| | - Janine Knauer-Arloth
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- Translational Research in Psychiatry, MaxPlanck Institute of Psychiatry, Munich, Germany
| | | | - Annalisa Marsico
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
| | - Nikola S. Mueller
- Computational Health Department, Helmholtz Center Munich, Neuherberg, Germany
- knowing01 GmbH, Munich, Germany
| |
Collapse
|
4
|
Tayyeb A, Dihazi GH, Tampe B, Zeisberg M, Tampe D, Hakroush S, Bührig C, Frese J, Serin N, Eltoweissy M, Müller GA, Dihazi H. Calreticulin Shortage Results in Disturbance of Calcium Storage, Mitochondrial Disease, and Kidney Injury. Cells 2022; 11:cells11081329. [PMID: 35456008 PMCID: PMC9025518 DOI: 10.3390/cells11081329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022] Open
Abstract
Renal Ca2+ reabsorption plays a central role in the fine-tuning of whole-body Ca2+ homeostasis. Here, we identified calreticulin (Calr) as a missing link in Ca2+ handling in the kidney and showed that a shortage of Calr results in mitochondrial disease and kidney pathogenesis. We demonstrated that Calr+/− mice displayed a chronic physiological low level of Calr and that this was associated with progressive renal injury manifested in glomerulosclerosis and tubulointerstitial damage. We found that Calr+/− kidney cells suffer from a disturbance in functionally active calcium stores and decrease in Ca2+ storage capacity. Consequently, the kidney cells displayed an abnormal activation of Ca2+ signaling and NF-κB pathways, resulting in inflammation and wide progressive kidney injury. Interestingly, the disturbance in the Ca2+ homeostasis and signaling in Calr+/− kidney mice cells triggered severe mitochondrial disease and aberrant mitophagy, resulting in a high level of oxidative stress and energy shortage. These findings provide novel mechanistic insight into the role of Calr in kidney calcium handling, function, and pathogenesis.
Collapse
Affiliation(s)
- Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore 53700, Pakistan;
| | - Gry H. Dihazi
- UMG-Laboratories, Institute for Clinical Chemistry, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
| | - Björn Tampe
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Desiree Tampe
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Samy Hakroush
- Department of Pathology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
| | - Charlotte Bührig
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Jenny Frese
- Department of Occupational Medicine and Health Safety, Deutsche Post AG, Kölnische Strasse 81, 34117 Kassel, Germany;
| | - Nazli Serin
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
- Department of Hematology and Oncology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Marwa Eltoweissy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt;
| | - Gerhard A. Müller
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Centre Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (B.T.); (M.Z.); (D.T.); (C.B.); (N.S.); (G.A.M.)
- Centre for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-551-3960350
| |
Collapse
|