1
|
Lee S, Choi S, Kim MS. Intra-articular hydrogel formulation prolongs the in vivo stability of Toll-like receptor antagonistic peptides for rheumatoid arthritis treatment. J Control Release 2024; 372:467-481. [PMID: 38917954 DOI: 10.1016/j.jconrel.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation that primarily affects joint tissue and requires frequent medication. Recently, we developed cyclic phage-display-derived inhibitory peptides (CPs), which act as Toll-like Receptor 4 antagonists. These CPs exhibited therapeutic efficacy against joint diseases by alleviating inflammatory factors. Nonetheless, CP exhibits in vivo instability and a short half-life. Therefore, this study sought to improve the in vivo stability of CP, thereby reducing the frequency of CP administration through the development of an injectable hydrogel depot formulation. To improve in vivo stability, CP was chemically conjugated to hyaluronic acid (HA-CP) and subsequently mixed into a temperature-sensitive hydrogel [methoxy polyethylene glycol-b-poly(ε-caprolactone)-ran-poly(lactide) (PC)] as an injectable depot (PC+(HA-CP)). For comparison, CP was physically mixed with HA and PC (PC+(HA+CP)). Both PC+(HA-CP) and PC+(HA+CP) were found to rapidly form depots upon injection into the joint space. Cell viability assays confirmed the non-toxic nature of PC+(HA-CP) and PC+(HA+CP), whereas both formulations exhibited inhibition of inflammatory factors. Furthermore, PC+(HA-CP) retained CP for a longer duration compared to PC+(HA+CP) in the presence of hyaluronidase and within the RA joint space. Following intra-articular injection, both the PC+(HA-CP) and PC+(HA+CP) depots exhibited reductions in RA symptoms, cartilage regeneration, and suppression of pro-inflammatory cytokine levels. Specifically, by extending the in vivo retention of CP, PC+(HA-CP) demonstrated superior RA treatment efficacy compared to PC+(HA+CP). In conclusion, intra-articular injection of PC+(HA-CP) was validated as an effective strategy for treating RA, owing to its ability to prolong the in vivo retention of CP. This approach holds promise for improving RA management and patient outcomes.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Republic of Korea.
| |
Collapse
|
2
|
Ahmad B, Achek A, Farooq M, Choi S. Accelerated NLRP3 inflammasome-inhibitory peptide design using a recurrent neural network model and molecular dynamics simulations. Comput Struct Biotechnol J 2023; 21:4825-4835. [PMID: 37854633 PMCID: PMC10579963 DOI: 10.1016/j.csbj.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Anomalous NLRP3 inflammasome responses have been linked to multiple health issues, including but not limited to atherosclerosis, diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disease. Thus, targeting NLRP3 and modulating its associated immune response might be a promising strategy for developing new anti-inflammatory drugs. Herein, we report a computational method for de novo peptide design for targeting NLRP3 inflammasomes. The described method leverages a long-short-term memory (LSTM) network based on a recurrent neural network (RNN) to model a valuable latent space of molecules. The resulting classifiers are utilized to guide the selection of molecules generated by the model based on circular dichroism spectra and physicochemical features derived from high-throughput molecular dynamics simulations. Of the experimentally tested sequences, 60% of the peptides showed NLRP3-mediated inhibition of IL-1β and IL-18. One peptide displayed high potency against NLRP3-mediated IL-1β inhibition. However, NLRC4 and AIM2 inflammasome-mediated IL-1β secretion was uninterrupted by this peptide, demonstrating its selectivity toward the NLRP3 inflammasome. Overall, these results indicate that deep learning and molecular dynamics can accelerate the discovery of NLRP3 inhibitors with potent and selective activity.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- Technology Development Platform, Institut Pasteur Korea, Seongnam 13488, Soouth Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| |
Collapse
|
3
|
Zhang X, Wu R, Liu Q, Zhou L. Interfacial water molecules contribute to antibody binding to the receptor-binding domain of SARS-CoV-2 spike protein. J Biomol Struct Dyn 2023; 41:14929-14938. [PMID: 37042961 DOI: 10.1080/07391102.2023.2199336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/18/2023] [Indexed: 04/13/2023]
Abstract
Antibodies that recognize the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially the neutralizing antibodies, carry great hope in the treatment and final elimination of COVID-19. Driven by a synchronized global effort, thousands of antibodies against the spike protein have been identified during the past two years, with the structural information available at atomistic detail for hundreds of these antibodies. We developed an improved molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method including explicitly treated interfacial water to calculate the binding free energy between representative antibodies and the receptor binding domain (RBD) domain of SARS-COV-2 spike proteins. We discovered that explicit treatment of water molecules located at the interface between RBD and antibody effectively improves the results for the WT and variants of concern (VOC) systems. Interfacial water molecules, together with surface and internal water molecules, behave drastically from bulk water and exert peculiar impacts on protein dynamics and energy, and thus warrant explicit treatment to complement implicit solvent models. Our results illustrate the importance of including interfacial water molecules to approach efficient and reliable prediction of binding free energy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, P.R. China
| | - Ruiping Wu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, P.R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
4
|
Fernández-Quintero ML, Ljungars A, Waibl F, Greiff V, Andersen JT, Gjølberg TT, Jenkins TP, Voldborg BG, Grav LM, Kumar S, Georges G, Kettenberger H, Liedl KR, Tessier PM, McCafferty J, Laustsen AH. Assessing developability early in the discovery process for novel biologics. MAbs 2023; 15:2171248. [PMID: 36823021 PMCID: PMC9980699 DOI: 10.1080/19420862.2023.2171248] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter M. Tessier
- Department of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCafferty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Babraham Research Campus, Cambridge, UK
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Neamtu A, Mocci F, Laaksonen A, Barroso da Silva FL. Towards an optimal monoclonal antibody with higher binding affinity to the receptor-binding domain of SARS-CoV-2 spike proteins from different variants. Colloids Surf B Biointerfaces 2023; 221:112986. [PMID: 36375294 PMCID: PMC9617679 DOI: 10.1016/j.colsurfb.2022.112986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
A highly efficient and robust multiple scales in silico protocol, consisting of atomistic Molecular Dynamics (MD), coarse-grain (CG) MD, and constant-pH CG Monte Carlo (MC), has been developed and used to study the binding affinities of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 and several of its here optimized versions against 11 SARS-CoV-2 variants including the wild type. Totally 235,000 mAbs structures were initially generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-like-RBD complexes with critical mutations and compared to the native one, all having the potential to block virus-host cell interaction. Of these 10 finalists, two candidates were further identified in the CG simulations to be the best against all SARS-CoV-2 variants. Surprisingly, all 10 candidates and the native CR3022 exhibited a higher affinity for the Omicron variant despite its highest number of mutations. The multiscale protocol gives us a powerful rational tool to design efficient mAbs. The electrostatic interactions play a crucial role and appear to be controlling the affinity and complex building. Studied mAbs carrying a more negative total net charge show a higher affinity. Structural determinants could be identified in atomistic simulations and their roles are discussed in detail to further hint at a strategy for designing the best RBD binder. Although the SARS-CoV-2 was specifically targeted in this work, our approach is generally suitable for many diseases and viral and bacterial pathogens, leukemia, cancer, multiple sclerosis, rheumatoid, arthritis, lupus, and more.
Collapse
Affiliation(s)
- Andrei Neamtu
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, Str. Universitatii nr. 16, 700051 Iasi, România; TRANSCEND Centre - Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot, Nr. 2-4 Iași, România
| | - Francesca Mocci
- University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| | - Aatto Laaksonen
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41 A, 700487 Iasi, Romania; University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy; Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. café, s/no - campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Ahmad B, Choi S. Unraveling the Tomaralimab Epitope on the Toll-like Receptor 2 via Molecular Dynamics and Deep Learning. ACS OMEGA 2022; 7:28226-28237. [PMID: 35990491 PMCID: PMC9386714 DOI: 10.1021/acsomega.2c02559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Tomaralimab (OPN-305) is the first humanized immunoglobulin G4 monoclonal antibody against TLR2 and is designed to prevent inflammation that is driven by inappropriate or excessive activation of innate immune pathways. Here, we constructed a homology model of Tomaralimab and its complex with TLR2 at different mapped epitopes and unraveled their behavior at the atomistic level. Furthermore, we predicted a novel epitope (leucine-rich region 9-12) near the lipopeptide-binding site that can be targeted and studied for the utility of therapeutic antibodies. A geometric deep learning algorithm was used to envisage Tomaralimab binding affinity changes upon mutation. There was a significant difference in binding affinity for Tomaralimab following epitope-mutated alanine substitutions of Val266, Pro294, Arg295, Asn319, Pro326, and His372. Using deep learning-based ΔΔG prediction, we computationally contrasted human TLR2-TLR2, TLR2-TLR1, and TLR2-TLR6 dimerization. These results reveal the mechanism that underlies Tomaralimab binding to TLR2 and should help to design structure-based mimics or bispecific antibodies that can be used to inhibit both lipopeptide-binding and TLR2 dimerization.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
- S&K
Therapeutics, Ajou University
Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department
of Molecular Science and Technology, Ajou
University, Suwon 16499, Korea
- S&K
Therapeutics, Ajou University
Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
7
|
Yurina V, Adianingsih OR. Predicting epitopes for vaccine development using bioinformatics tools. Ther Adv Vaccines Immunother 2022; 10:25151355221100218. [PMID: 35647486 PMCID: PMC9130818 DOI: 10.1177/25151355221100218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Epitope-based DNA vaccine development is one application of bioinformatics or
in silico studies, that is, computational methods,
including mathematical, chemical, and biological approaches, which are widely
used in drug development. Many in silico studies have been
conducted to analyze the efficacy, safety, toxicity effects, and interactions of
drugs. In the vaccine design process, in silico studies are
performed to predict epitopes that could trigger T-cell and B-cell reactions
that would produce both cellular and humoral immune responses. Immunoinformatics
is the branch of bioinformatics used to study the relationship between immune
responses and predicted epitopes. Progress in immunoinformatics has been rapid
and has led to the development of a variety of tools that are used for the
prediction of epitopes recognized by B cells or T cells as well as the antigenic
responses. However, the in silico approach to vaccine design is
still relatively new; thus, this review is aimed at increasing understanding of
the importance of in silico studies in the design of vaccines
and thereby facilitating future research in this field.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Jalan Veteran, Malang 65145, East Java, Indonesia
| | | |
Collapse
|