1
|
Parant F, Mure F, Maurin J, Beauvilliers L, Chorfa C, El Jamali C, Ohlmann T, Chavatte L. Selenium Discrepancies in Fetal Bovine Serum: Impact on Cellular Selenoprotein Expression. Int J Mol Sci 2024; 25:7261. [PMID: 39000368 PMCID: PMC11242189 DOI: 10.3390/ijms25137261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Selenium is an essential trace element in our diet, crucial for the composition of human selenoproteins, which include 25 genes such as glutathione peroxidases and thioredoxin reductases. The regulation of the selenoproteome primarily hinges on the bioavailability of selenium, either from dietary sources or cell culture media. This selenium-dependent control follows a specific hierarchy, with "housekeeping" selenoproteins maintaining constant expression while "stress-regulated" counterparts respond to selenium level fluctuations. This study investigates the variability in fetal bovine serum (FBS) selenium concentrations among commercial batches and its effects on the expression of specific stress-related cellular selenoproteins. Despite the limitations of our study, which exclusively used HEK293 cells and focused on a subset of selenoproteins, our findings highlight the substantial impact of serum selenium levels on selenoprotein expression, particularly for GPX1 and GPX4. The luciferase reporter assay emerged as a sensitive and precise method for evaluating selenium levels in cell culture environments. While not exhaustive, this analysis provides valuable insights into selenium-mediated selenoprotein regulation, emphasizing the importance of serum composition in cellular responses and offering guidance for researchers in the selenoprotein field.
Collapse
Affiliation(s)
- François Parant
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Hôpital Lyon-Sud-Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Fabrice Mure
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Julien Maurin
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Hôpital Lyon-Sud-Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Léana Beauvilliers
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Hôpital Lyon-Sud-Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Chaïma Chorfa
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Chaymae El Jamali
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| |
Collapse
|
2
|
Del Castillo Busto ME, Ward-Deitrich C, Evans SO, Rayman MP, Jameson MB, Goenaga-Infante H. Selenium speciation studies in cancer patients to evaluate the responses of biomarkers of selenium status to different selenium compounds. Anal Bioanal Chem 2024; 416:2835-2848. [PMID: 38286852 PMCID: PMC11009772 DOI: 10.1007/s00216-024-05141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
This work presents the first systematic comparison of selenium (Se) speciation in plasma from cancer patients treated orally with three Se compounds (sodium selenite, SS; L-selenomethionine, SeMet; or Se-methylselenocysteine, MSC) at 400 µg/day for 28 days. The primary goal was to investigate how these chemical forms of Se affect the plasma Se distribution, aiming to identify the most effective Se compound for optimal selenoprotein expression. This was achieved using methodology based on HPLC-ICP-MS after sample preparation/fractionation approaches. Measurements of total Se in plasma samples collected before and after 4 weeks of treatment showed that median total Se levels increased significantly from 89.6 to 126.4 µg kg-1 Se (p < 0.001), particularly when SeMet was administered (190.4 µg kg-1 Se). Speciation studies showed that the most critical differences between treated and baseline samples were seen for selenoprotein P (SELENOP) and selenoalbumin after administration with MSC (p = 5.8 × 10-4) and SeMet (p = 6.8 × 10-5), respectively. Notably, selenosugar-1 was detected in all low-molecular-weight plasma fractions following treatment, particularly with MSC. Two different chromatographic approaches and spiking experiments demonstrated that about 45% of that increase in SELENOP levels (to ~ 8.8 mg L-1) with SeMet is likely due to the non-specific incorporation of SeMet into the SELENOP affinity fraction. To the authors' knowledge, this has not been reported to date. Therefore, SELENOP is probably part of both the regulated (55%) and non-regulated (45%) Se pools after SeMet administration, whereas SS and MSC mainly contribute to the regulated one.
Collapse
Affiliation(s)
- M Estela Del Castillo Busto
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, TW11 0LY, UK.
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña (UDC), 15071, A Coruña, Spain.
| | - Christian Ward-Deitrich
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, TW11 0LY, UK
| | - Stephen O Evans
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Margaret P Rayman
- Department of Nutritional Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Michael B Jameson
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
- Oncology Department, Waikato Hospital, Hamilton, New Zealand
| | - Heidi Goenaga-Infante
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, TW11 0LY, UK.
| |
Collapse
|
3
|
Dogaru CB, Muscurel C, Duță C, Stoian I. "Alphabet" Selenoproteins: Their Characteristics and Physiological Roles. Int J Mol Sci 2023; 24:15992. [PMID: 37958974 PMCID: PMC10650576 DOI: 10.3390/ijms242115992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium-selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling pathways, physiological roles, and complex pathogenic processes (including, for example, teratogenesis, neurodegenerative, immuno-inflammatory, and obesity development). All of the selenoproteins contain one selenocysteine (Sec) residue, with only one notable exception, the selenoprotein P (SELENOP), which has 10 Sec residues. Although these mechanisms have been studied intensely and in detail, the characteristics and functions of many selenoproteins remain unknown. This review is dedicated to the recent data describing the identity and the functions of several selenoproteins that are less known than glutathione peroxidases (Gpxs), iodothyronine deiodinases (DIO), thioredoxin reductases (TRxRs), and methionine sulfoxide reductases (Msrs) and which are named after alphabetical letters (i.e., F, H, I, K, M, N, O, P, R, S, T, V, W). These "alphabet" selenoproteins are involved in a wide range of physiological and pathogenetic processes such as antioxidant defense, anti-inflammation, anti-apoptosis, regulation of immune response, regulation of oxidative stress, endoplasmic reticulum (ER) stress, immune and inflammatory response, and toxin antagonism. In selenium deficiency, the "alphabet" selenoproteins are affected hierarchically, both with respect to the particular selenoprotein and the tissue of expression, as the brain or endocrine glands are hardly affected by Se deficiency due to their equipment with LRP2 or LRP8.
Collapse
Affiliation(s)
| | | | - Carmen Duță
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
4
|
Schwarz M, Meyer CE, Löser A, Lossow K, Hackler J, Ott C, Jäger S, Mohr I, Eklund EA, Patel AAH, Gul N, Alvarez S, Altinonder I, Wiel C, Maares M, Haase H, Härtlova A, Grune T, Schulze MB, Schwerdtle T, Merle U, Zischka H, Sayin VI, Schomburg L, Kipp AP. Excessive copper impairs intrahepatocyte trafficking and secretion of selenoprotein P. Nat Commun 2023; 14:3479. [PMID: 37311819 DOI: 10.1038/s41467-023-39245-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Selenium homeostasis depends on hepatic biosynthesis of selenoprotein P (SELENOP) and SELENOP-mediated transport from the liver to e.g. the brain. In addition, the liver maintains copper homeostasis. Selenium and copper metabolism are inversely regulated, as increasing copper and decreasing selenium levels are observed in blood during aging and inflammation. Here we show that copper treatment increased intracellular selenium and SELENOP in hepatocytes and decreased extracellular SELENOP levels. Hepatic accumulation of copper is a characteristic of Wilson's disease. Accordingly, SELENOP levels were low in serum of Wilson's disease patients and Wilson's rats. Mechanistically, drugs targeting protein transport in the Golgi complex mimicked some of the effects observed, indicating a disrupting effect of excessive copper on intracellular SELENOP transport resulting in its accumulation in the late Golgi. Our data suggest that hepatic copper levels determine SELENOP release from the liver and may affect selenium transport to peripheral organs such as the brain.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Caroline E Meyer
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Christiane Ott
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Susanne Jäger
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Isabelle Mohr
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Ella A Eklund
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Angana A H Patel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Nadia Gul
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Samantha Alvarez
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Ilayda Altinonder
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Maares
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, 41345, Gothenburg, Sweden
- The Institute of Medical Microbiology and Hygiene, University Medical Centre Freiburg, Freiburg, Germany
| | - Tilman Grune
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Matthias B Schulze
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteinerstraße 29, 80802, Munich, Germany
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Anna P Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany.
| |
Collapse
|
5
|
Staneviciene I, Levinas D, Sadauskiene I, Liekis A, Viezeliene D, Kursvietiene L, Naginiene R, Baranauskiene D, Simakauskiene V, Vaitkiene P, Miniotaite G, Sulinskiene J. Effect of Organic Selenium on the Homeostasis of Trace Elements, Lipid Peroxidation, and mRNA Expression of Antioxidant Proteins in Mouse Organs. Int J Mol Sci 2023; 24:ijms24119704. [PMID: 37298655 DOI: 10.3390/ijms24119704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
(1) In this study we determined the effect of long-term selenomethionine administration on the oxidative stress level and changes in antioxidant protein/enzyme activity; mRNA expression; and the levels of iron, zinc, and copper. (2) Experiments were performed on 4-6-week-old BALB/c mice, which were given selenomethionine (0.4 mg Se/kg b.w.) solution for 8 weeks. The element concentration was determined via inductively coupled plasma mass spectrometry. mRNA expression of SelenoP, Cat, and Sod1 was quantified using real-time quantitative reverse transcription. Malondialdehyde content and catalase activity were determined spectrophotometrically. (3) After long-term SeMet administration, the amount of Se increased by 12-fold in mouse blood, 15-fold in the liver, and 42-fold in the brain, as compared to that in the control. Exposure to SeMet decreased amounts of Fe and Cu in blood, but increased Fe and Zn levels in the liver and increased the levels of all examined elements in the brain. Se increased malondialdehyde content in the blood and brain but decreased it in liver. SeMet administration increased the mRNA expression of selenoprotein P, dismutase, and catalase, but decreased catalase activity in brain and liver. (4) Eight-week-long selenomethionine consumption elevated Se levels in the blood, liver, and especially in the brain and disturbed the homeostasis of Fe, Zn, and Cu. Moreover, Se induced lipid peroxidation in the blood and brain, but not in the liver. In response to SeMet exposure, significant up-regulation of the mRNA expression of catalase, superoxide dismutase 1, and selenoprotein P in the brain, and especially in the liver, was determined.
Collapse
Affiliation(s)
- Inga Staneviciene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Dovydas Levinas
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Ilona Sadauskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Viezeliene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
| | - Rima Naginiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Dale Baranauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Vaida Simakauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Paulina Vaitkiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Giedre Miniotaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| | - Jurgita Sulinskiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, LT-44307 Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania
| |
Collapse
|
6
|
Vinceti M, Urbano T, Chiari A, Filippini T, Wise LA, Tondelli M, Michalke B, Shimizu M, Saito Y. Selenoprotein P concentrations and risk of progression from mild cognitive impairment to dementia. Sci Rep 2023; 13:8792. [PMID: 37258587 DOI: 10.1038/s41598-023-36084-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
There is a growing literature investigating the effects of selenium on the central nervous system and cognitive function. However, little is known about the role of selenoprotein P, the main selenium transporter, which can also have adverse biological effects. We conducted a prospective cohort study of individuals aged 42-81 years who received a clinical diagnosis of mild cognitive impairment. Using sandwich ELISA methods, we measured full-length selenoprotein P concentrations in serum and cerebrospinal fluid to assess the relation with dementia incidence during a median follow-up of 47.3 months. We used Cox proportional hazards regression and restricted cubic splines to model such relation. Of the 54 participants, 35 developed dementia during follow-up (including 26 cases of Alzheimer's dementia). Selenoprotein P concentrations in serum and cerebrospinal fluid were highly correlated, and in spline regression analyses they each showed a positive non-linear association with dementia risk, particularly after excluding dementia cases diagnosed within 24 months of follow-up. We also observed differences in association according to the dementia subtypes considered. Risk ratios of dementia peaked at 2-6 at the highest levels of selenoprotein P, when compared to its median level, also depending on matrix, analytical methodology and dementia subtype. Findings of this study, the first to assess selenoprotein P levels in the central nervous system in vivo and the first to use a prospective study design to evaluate associations with dementia, suggest that higher circulating concentrations of selenoprotein P, both in serum and cerebrospinal fluid, predict progression of MCI to dementia. However, further confirmation of these findings is required, given the limited statistical precision of the associations and the potential for residual confounding.
Collapse
Affiliation(s)
- Marco Vinceti
- Department of Biomedical, Metabolic, and Neural Sciences, CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Teresa Urbano
- Department of Biomedical, Metabolic, and Neural Sciences, CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Chiari
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, University Hospital, Modena, Italy
| | - Tommaso Filippini
- Department of Biomedical, Metabolic, and Neural Sciences, CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neurosciences and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Manuela Tondelli
- Neurology Unit, University Hospital, Modena, Italy
- Primary Care Department, Local Health Unit of Modena, Modena, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Urbano T, Vinceti M, Mandrioli J, Chiari A, Filippini T, Bedin R, Tondelli M, Simonini C, Zamboni G, Shimizu M, Saito Y. Selenoprotein P Concentrations in the Cerebrospinal Fluid and Serum of Individuals Affected by Amyotrophic Lateral Sclerosis, Mild Cognitive Impairment and Alzheimer’s Dementia. Int J Mol Sci 2022; 23:ijms23179865. [PMID: 36077261 PMCID: PMC9456314 DOI: 10.3390/ijms23179865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 02/06/2023] Open
Abstract
Selenoprotein P, a selenium-transporter protein, has been hypothesized to play a role in the etiology of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s dementia (AD). However, data in humans are scarce and largely confined to autoptic samples. In this case–control study, we determined selenoprotein P concentrations in both the cerebrospinal fluid (CSF) and the serum of 50 individuals diagnosed with ALS, 30 with AD, 54 with mild cognitive impairment (MCI) and of 30 controls, using sandwich enzyme-linked immunosorbent assay (ELISA) methods. We found a positive and generally linear association between CSF and serum selenoprotein P concentrations in all groups. CSF selenoprotein P and biomarkers of neurodegeneration were positively associated in AD, while for MCI, we found an inverted-U-shaped relation. CSF selenoprotein P concentrations were higher in AD and MCI than in ALS and controls, while in serum, the highest concentrations were found in MCI and ALS. Logistic and cubic spline regression analyses showed an inverse association between CSF selenoprotein P levels and ALS risk, and a positive association for AD risk, while an inverted-U-shaped relation with MCI risk emerged. Conversely, serum selenoprotein P concentrations were positively associated with risk of all conditions but only in their lower range. Overall, these findings indicate some abnormalities of selenoprotein P concentrations in both the central nervous system and blood associated with ALS and neurocognitive disorders, though in different directions. These alterations may reflect either phenomena of etiologic relevance or disease-induced alterations of nutritional and metabolic status.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Marco Vinceti
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA
- Correspondence: ; Tel.: +39-059-2055-481
| | - Jessica Mandrioli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Tommaso Filippini
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - Roberta Bedin
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Cecilia Simonini
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Selenoprotein: Potential Player in Redox Regulation in Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081630. [PMID: 36009349 PMCID: PMC9404770 DOI: 10.3390/antiox11081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were identified using various bioinformatics approaches, out of which C. reinhardtii is known to have 10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported. Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation and defense by acting as antioxidants in various physiological conditions.
Collapse
|
9
|
Koeder C, Perez-Cueto FJA. Vegan nutrition: a preliminary guide for health professionals. Crit Rev Food Sci Nutr 2022; 64:670-707. [PMID: 35959711 DOI: 10.1080/10408398.2022.2107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Since the beginning of the 21st century, interest in vegan diets has been rapidly increasing in most countries. Misconceptions about vegan diets are widespread among the general population and health professionals. Vegan diets can be health-promoting and may offer certain important advantages compared to typical Western (and other mainstream) eating patterns. However, adequate dietary sources/supplements of nutrients of focus specific to vegan diets should be identified and communicated. Without supplements/fortified foods, severe vitamin B12 deficiency may occur. Other potential nutrients of focus are calcium, vitamin D, iodine, omega-3 fatty acids, iron, zinc, selenium, vitamin A, and protein. Ensuring adequate nutrient status is particularly important during pregnancy, lactation, infancy, and childhood. Health professionals are often expected to be able to provide advice on the topic of vegan nutrition, but a precise and practical vegan nutrition guide for health professionals is lacking. Consequently, it is important and urgent to provide such a set of dietary recommendations. It is the aim of this article to provide vegan nutrition guidelines, based on current evidence, which can easily be communicated to vegan patients/clients, with the goal of ensuring adequate nutrient status in vegans.
Collapse
Affiliation(s)
- Christian Koeder
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, Hanover, Germany
- Department of Nutrition, University of Applied Sciences Münster, Münster, Germany
| | | |
Collapse
|
10
|
Watts E, Thyer R, Ellington AD, Brodbelt JS. Integrated Top-Down and Bottom-Up Mass Spectrometry for Characterization of Diselenide Bridging Patterns of Synthetic Selenoproteins. Anal Chem 2022; 94:11175-11184. [PMID: 35930618 DOI: 10.1021/acs.analchem.2c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the rapid acceleration in the design and development of new biotherapeutics, ensuring consistent quality and understanding degradation pathways remain paramount, requiring an array of analytical methods including mass spectrometry. The incorporation of non-canonical amino acids, such as for synthetic selenoproteins, creates additional challenges. A comprehensive strategy to characterize selenoproteins should serve dual purposes of providing sequence confirmation and mapping of selenocysteine bridge locations and the identification of unanticipated side products. In the present study, a combined approach exploiting the benefits of both top-down and bottom-up mass spectrometry was developed. Both electron-transfer/higher-energy collision dissociation and 213 nm ultraviolet photodissociation were utilized to provide complementary information, allowing high quality characterization, localization of diselenide bridges for complex proteins, and the identification of previously unreported selenoprotein dimers.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Minich WB. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S168-S102. [PMID: 35501994 PMCID: PMC8802287 DOI: 10.1134/s0006297922140139] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
As an essential trace element, selenium (Se) plays a tremendous role in the functioning of the human organism being used for the biosynthesis of selenoproteins (proteins containing one or several selenocysteine residues). The functions of human selenoproteins in vivo are extremely diverse. Many selenoproteins have an antioxidant activity and, hence, play a key role in cell antioxidant defense and maintenance of redox homeostasis, which accounts for their involvement in diverse biological processes, such as signal transduction, proliferation, cell transformation and aging, ferroptosis, immune system functioning, etc. One of the critical functions of selenoenzymes is participation in the synthesis of thyroid hormones regulating basal metabolism in all body tissues. Over the last decades, optimization of population Se intake for prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide.
Collapse
Affiliation(s)
- Waldemar B Minich
- Institute of Experimental Endocrinology, Charite, Medical University, Berlin, D-10115, Germany.
| |
Collapse
|
12
|
Veisa V, Kalere I, Zake T, Strele I, Makrecka-Kuka M, Upmale-Engela S, Skesters A, Rezeberga D, Lejnieks A, Pudule I, Grinberga D, Velika B, Dambrova M, Konrade I. Assessment of Iodine and Selenium Nutritional Status in Women of Reproductive Age in Latvia. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111211. [PMID: 34833429 PMCID: PMC8622847 DOI: 10.3390/medicina57111211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Adequate dietary intake of iodine and selenium is essential during pregnancy. While iodine is vital for maternal thyroid function and fetal development, selenium contributes to the regulation of thyroid function and thyroid autoimmunity. This study aimed to assess the consumption of iodine- and selenium-containing products by women of reproductive age and the iodine and selenium nutritional status of pregnant women in Latvia. Materials and Methods: Population health survey (2010–2018) data were used to characterize dietary habits in women of reproductive age. Additionally, 129 pregnant women in the first trimester were recruited; they completed a questionnaire and were tested for thyroid function, urinary iodine concentration (UIC), and serum selenium and selenoprotein P levels. Results: The use of some dietary sources of iodine (e.g., milk and dairy products) and selenium (e.g., bread) has decreased in recent years. Less than 10% of respondents reported the use of iodized salt. The use of supplements has become more common (reported by almost 50% of respondents in 2018). Dietary habits were similar in pregnant women, but the use of supplements was even higher (almost 70%). Nevertheless, most supplements used in pregnancy had insufficient contents of iodine and selenium. Thyroid function was euthyreotic in all women, but 13.9% of participants had a thyroid peroxidase antibodies (TPO-ab) level above 60 IU/mL. The median UIC (IQR) was 147.2 (90.0–248.1) μg/gCr, and 52.8% of pregnant women had a UIC below 150 μg/gCr. The mean selenium (SD) level was 101.5 (35.6) μg/L; 30.1% of women had a selenium level below 80 μg/L. The median selenoprotein P level was 6.9 (3.1–9.0) mg/L. Conclusions: Iodine nutrition in Latvian population of pregnant women was near the lower limit of adequate and a third of the population had a selenium deficiency. Supplements were frequently used, but most did not contain the recommended amounts of iodine and selenium.
Collapse
Affiliation(s)
- Vija Veisa
- Department of Obstetrics and Gynecology, Riga Stradins University, LV-1007 Riga, Latvia;
- Correspondence: ; Tel.: +371-26442100
| | - Ieva Kalere
- Department of Internal Disease, Riga Stradins University, LV-1007 Riga, Latvia; (I.K.); (T.Z.); (S.U.-E.); (A.L.); (M.D.); (I.K.)
| | - Tatjana Zake
- Department of Internal Disease, Riga Stradins University, LV-1007 Riga, Latvia; (I.K.); (T.Z.); (S.U.-E.); (A.L.); (M.D.); (I.K.)
| | - Ieva Strele
- Institute of Occupational Safety and Environmental Health, Riga Stradins University, LV-1007 Riga, Latvia;
| | | | - Sabine Upmale-Engela
- Department of Internal Disease, Riga Stradins University, LV-1007 Riga, Latvia; (I.K.); (T.Z.); (S.U.-E.); (A.L.); (M.D.); (I.K.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Andrejs Skesters
- Scientific Laboratory of Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Dace Rezeberga
- Department of Obstetrics and Gynecology, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Aivars Lejnieks
- Department of Internal Disease, Riga Stradins University, LV-1007 Riga, Latvia; (I.K.); (T.Z.); (S.U.-E.); (A.L.); (M.D.); (I.K.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Iveta Pudule
- Centre for Disease Prevention and Control, LV-1005 Riga, Latvia; (I.P.); (D.G.); (B.V.)
| | - Daiga Grinberga
- Centre for Disease Prevention and Control, LV-1005 Riga, Latvia; (I.P.); (D.G.); (B.V.)
| | - Biruta Velika
- Centre for Disease Prevention and Control, LV-1005 Riga, Latvia; (I.P.); (D.G.); (B.V.)
| | - Maija Dambrova
- Department of Internal Disease, Riga Stradins University, LV-1007 Riga, Latvia; (I.K.); (T.Z.); (S.U.-E.); (A.L.); (M.D.); (I.K.)
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia;
| | - Ilze Konrade
- Department of Internal Disease, Riga Stradins University, LV-1007 Riga, Latvia; (I.K.); (T.Z.); (S.U.-E.); (A.L.); (M.D.); (I.K.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| |
Collapse
|