1
|
Zenkov AV, Sushko ES, Mogilnaya OA, Volochaev MN, Shabanov AV, Kamnev AA, Tugarova AV, Kudryasheva NS. Application of the luminous bacterium Photobacterium phosphoreum for toxicity monitoring of selenite and its reduction to selenium(0) nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125078. [PMID: 39250849 DOI: 10.1016/j.saa.2024.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Luminous marine bacteria are traditionally used as a bioassay due to the convenience and high rate of registering the intensity of their physiological function - luminescence. This study aimed to develop the application of Photobacterium phosphoreum in traditional and novel fields - toxicity monitoring and biotechnology. We demonstrated (1) effects of selenite ions on bioluminescence, and (2) biotransformation of selenite to selenium(0) in the form of nanoparticles. The effects of selenite (SeO32-) on the intensity of bacterial bioluminescence were studied, and its dependencies on exposure time and concentration of Na2SeO3 were analyzed. Bioluminescence activation and inhibition were revealed; dose-effect dependencies corresponded to the hormesis model. The toxicity of SeO32- was characterized by an effective concentration of 10-3 M. Effects of SeO32- on reactive oxygen species (ROS) in bacterial suspensions were studied. High positive correlations were found between the bioluminescence intensity and ROS content, which indicates the decisive role of ROS and associated redox processes in the bioeffects of selenite ions. Scanning and transmission electron microscopy revealed the presence of nano-structures in the bacteria exposed to selenite. The energy dispersion spectrum detected a high content of selenium in the nanoparticles. The particle size distribution depended on Na2SeO3 concentration; maxima of the distribution varied within 45-55 nm.
Collapse
Affiliation(s)
- Andrei V Zenkov
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Ekaterina S Sushko
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia; Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia.
| | - Olga A Mogilnaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia
| | - Mikhail N Volochaev
- Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia
| | - Alexandr V Shabanov
- Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia
| | - Alexander A Kamnev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Scientific Center of the Russian Academy of Sciences, 410049 Saratov, Russia
| | - Anna V Tugarova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Federal Scientific Center of the Russian Academy of Sciences, 410049 Saratov, Russia
| | - Nadezhda S Kudryasheva
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036 Krasnoyarsk, Russia.
| |
Collapse
|
2
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
3
|
Seke M, Zivkovic M, Stankovic A. Versatile applications of fullerenol nanoparticles. Int J Pharm 2024; 660:124313. [PMID: 38857663 DOI: 10.1016/j.ijpharm.2024.124313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically. They have good biocompatibility, low toxicity and no immunological reactivity. In addition, their nanometre size, large surface area to volume ratio, ability to penetrate cell membranes, adaptable surface that can be easily modified with different functional groups, drug release, high physical stability in biological media, ability to remove free radicals, magnetic and optical properties make them desirable candidates for various applications. This review comprehensively summarises the various applications of fullerenol nanoparticles in different scientific fields such as nanobiomedicine, including antibacterial and antiviral agents, and provides an overview of their use in agriculture and biosensor technology. Recommendations are also made for future research that would further elucidate the mechanisms of fullerenols actions.
Collapse
Affiliation(s)
- Mariana Seke
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia.
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| |
Collapse
|
4
|
Polat Y, Şengel N, Küçük A, Özdemir Ç, Yığman Z, Balcı AB, Ergörün Aİ, Kavutçu M, Arslan M. Effects of sevoflurane and fullerenol C60 on lower limb ischemia-reperfusion injury in streptozocin-induced diabetic mice. Sci Prog 2024; 107:368504241239444. [PMID: 38614462 PMCID: PMC11016234 DOI: 10.1177/00368504241239444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) poses a significant challenge for physicians, necessitating the management of cell damage and the preservation of organ functions. Various surgical procedures, such as vascular surgery on extremities, temporary cross-clamping of the abdominal aorta in aortic surgery, and the use of a tourniquet in extremity surgeries, may induce lower limb IRI. The susceptibility to IRI is heightened in individuals with diabetes. This study aimed to investigate the effects of fullerenol C60 and sevoflurane on mouse muscle tissue in a lower limb IRI model and to assess their potential in preventing complications arising from ischemia-reperfusion in mice with streptozocin-induced diabetes. METHODS A total of 36 adult Swiss albino mice were randomly divided into six groups, each consisting of six mice: control group (group C), diabetes group (group D), diabetes-ischemia/reperfusion group (group DIR), diabetes-ischemia/reperfusion-fullerenol C60 group (group DIR-FC60), diabetes-ischemia/reperfusion-sevoflurane group (group DIR-S), and diabetes-ischemia/reperfusion-sevoflurane-fullerenol C60 group (DIR-S-FC60). Streptozocin (55 mg/kg) was intraperitoneally administered to induce diabetes in the relevant groups, with mice displaying blood glucose levels of 250 mg/dL or higher at 72 h were considered diabetic. After 4 weeks, all groups underwent laparotomy under anesthesia. In DIR-FC60 and DIR-S-FC60 groups, fullerenol C60 (100 mg/kg) was intraperitoneally administrated 30 min before the ischemia period. Sevoflurane, delivered in 100% oxygen at a rate of 2.3% and 4 L/min, was administered during the ischemia period in DIR-S and DIR-S-FC60 groups. In the IR groups, a microvascular clamp was placed on the infrarenal abdominal aorta for 120 min during the ischemia period, followed by the removal of the clamp and a 120-min reperfusion period. At the end of the reperfusion, gastrocnemius muscle tissues were removed for histopathological and biochemical parameter examinations. RESULTS Histopathological examination revealed a significant reduction in the disorganization and degeneration of muscle cells in the DIR-S-FC60 group compared to the DIR group (p = 0.041). Inflammatory cell infiltration was notably lower in the DIR-S, DIR-FC60, and DIR-S-FC60 groups than in the DIR group (p = 0.031, p = 0.011, and p = 0.013, respectively). The total damage scores in the DIR-FC60 and DIR-S-FC60 groups were significantly lower than in the DIR group (p = 0.018 and p = 0.008, respectively). Furthermore, the levels of malondialdehyde (MDA) in the DIR-S, DIR-FC60, and DIR-S-FC60 groups were significantly lower than in the DIR group (p < 0.001, p < 0.001, and p < 0.001, respectively). Catalase (CAT) enzyme activity in the DIR-S, DIR-FC60, and DIR-S-FC60 groups was higher than in the DIR group (p = 0.001, p = 0.014, and p < 0.001, respectively). Superoxide dismutase (SOD) enzyme activity in the DIR-FC60 and DIR-S-FC60 groups was also higher than in the DIR group (p < 0.001 and p = 0.001, respectively). CONCLUSION Our findings indicate that administering fullerenol C60 30 min prior to ischemia in diabetic mice, in combination with sevoflurane, led to a reduction in oxidative stress and the correction of IR-related damage in muscle tissue histopathology. We believe that the administration of fullerenol C60 before IR, coupled with sevoflurane administration during IR, exerts a protective effect in mice.
Collapse
Affiliation(s)
- Yücel Polat
- Tekirdağ Dr İsmail Fehmi Cumalıoğlu City Hospital, Department of Cardiovascular Surgery, Tekirdağ, Turkey
| | - Necmiye Şengel
- Gazi University Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, (As a specialist in Anesthesiology and Reanimation), Ankara, Turkey
| | - Ayşegül Küçük
- Kutahya Health Sciences University Faculty of Medicine, Department of Physiology, Kutahya, Turkey
| | - Çağrı Özdemir
- Mamak State Hospital, Department of Anesthesiology and Reanimation, Ankara, Turkey
| | - Zeynep Yığman
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
- Gazi University Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| | | | - Aydan İremnur Ergörün
- Gazi University Faculty of Medicine, Department of Anesthesiology and Reanimation, Ankara, Turkey
| | - Mustafa Kavutçu
- Gazi University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Mustafa Arslan
- Gazi University Faculty of Medicine, Department of Anesthesiology and Reanimation, Ankara, Turkey
- Gazi University, Life Sciences Application and Research Center, Ankara, Turkey
- Gazi University, Laboratory Animal Breeding and Experimental Researches Center (GÜDAM), Ankara, Turkey
| |
Collapse
|
5
|
Stepin EA, Sushko ES, Vnukova NG, Churilov GN, Rogova AV, Tomilin FN, Kudryasheva NS. Effects of Endohedral Gd-Containing Fullerenols with a Different Number of Oxygen Substituents on Bacterial Bioluminescence. Int J Mol Sci 2024; 25:708. [PMID: 38255785 PMCID: PMC10815327 DOI: 10.3390/ijms25020708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Gadolinium (Gd)-containing fullerenols are perspective agents for magnetic resonance imaging and cancer research. They combine the unique paramagnetic properties of Gd with solubility in water, low toxicity and antiradical activity of fullerenols. We compared the bioeffects of two Gd-containing fullerenols with a different number of oxygen groups-20 and 42: Gd@C82O20H14 and Gd@C82O42H32. The bioluminescent bacteria-based assay was applied to monitor the toxicity of fullerenols, bioluminescence was applied as a signal physiological parameter, and bacterial enzyme-based assay was used to evaluate the fullerenol effects on enzymatic intracellular processes. Chemiluminescence luminol assay was applied to monitor the content of reactive oxygen species (ROS) in bacterial and enzymatic media. It was shown that Gd@C82O42H32 and Gd@C82O20H14 inhibited bacterial bioluminescence at >10-1 and >10-2 gL-1, respectively, revealing a lower toxicity of Gd@C82O42H32. Low-concentration (10-3-10-1 gL-1) bacterial bioluminescence activation by Gd@C82O42H32 was observed, while this activation was not found under exposure to Gd@C82O20H14. Additional carboxyl groups in the structure of Gd@C82O42H32 were determined by infrared spectroscopy and confirmed by quantum chemical calculations. The groups were supposed to endow Gd@C82O42H32 with higher penetration ability through the cellular membrane, activation ability, lower toxicity, balancing of the ROS content in the bacterial suspensions, and lower aggregation in aqueous media.
Collapse
Affiliation(s)
- Evsei A. Stepin
- Biophysics Department, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.A.S.); (E.S.S.)
| | - Ekaterina S. Sushko
- Biophysics Department, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.A.S.); (E.S.S.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
| | - Natalia G. Vnukova
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
- Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk, Russia
| | - Grigoriy N. Churilov
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
- Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk, Russia
| | - Anastasia V. Rogova
- Department of Physical and Inorganic Chemistry, School of Non-Ferrous Metals and Materials Science, Siberian Federal University, 660025 Krasnoyarsk, Russia;
- Laboratory for Digital Controlled Drugs and Theranostics, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Felix N. Tomilin
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
- Department of Physical and Inorganic Chemistry, School of Non-Ferrous Metals and Materials Science, Siberian Federal University, 660025 Krasnoyarsk, Russia;
- Laboratory for Digital Controlled Drugs and Theranostics, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Biophysics Department, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.A.S.); (E.S.S.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| |
Collapse
|
6
|
Sosnowska M, Kutwin M, Koczoń P, Chwalibog A, Sawosz E. Polyhydroxylated Fullerene C 60(OH) 40 Nanofilms Promote the Mesenchymal-Epithelial Transition of Human Liver Cancer Cells via the TGF-β1/Smad Pathway. J Inflamm Res 2023; 16:3739-3761. [PMID: 37663761 PMCID: PMC10474868 DOI: 10.2147/jir.s415378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background The various growth factors change the phenotype of neoplastic cells from sedentary (epithelial) to invasive (mesenchymal), which weaken intercellular connections and promote chemotaxis. It can be assumed that the use of anti-inflammatory polyhydroxyfull nanofilms will restore the sedentary phenotype of neoplastic cells in the primary site of the tumor and, consequently, increase the effectiveness of the therapy. Methods The studies were carried out on liver cancer cells HepG2, C3A and SNU-449, and non-cancer hepatic cell line THLE-3. Transforming growth factor (TGF), epidermal growth factor and tumor necrosis factor were used to induce the epithelial-mesenchymal transition. C60(OH)40 nanofilm was used to induce the mesenchymal-epithelial transition. Obtaining an invasive phenotype was confirmed on the basis of changes in the morphology using inverted light microscopy. RT-PCR was used to confirm mesenchymal or epithelial phenotype based on e-cadherin, snail, vimentin expression or others. Water colloids at a concentration of 100 mg/L were used to create nanofilms of fullerene, fullerenol, diamond and graphene oxide. The ELISA test for the determination of TGF expression and growth factor antibody array were used to select the most anti-inflammatory carbon nanofilm. Mitochondrial activity and proliferation of cells were measured by XTT and BrdU tests. Results Cells lost their natural morphology of cells growing in clusters and resembled fibroblast cells after adding a cocktail of factors. Among the four allotropic forms of carbon tested, only the C60(OH)40 nanofilm inhibited the secretion of TGF in all the cell lines used and inhibited the secretion of other factors, including insulin-like growth factor system. Nanofilm C60(OH)40 was non-toxic to liver cells and inhibited the TGF-β1/Smad pathway of invasive cells treated with the growth factor cocktail. Conclusion The introduction of an anti-inflammatory, nontoxic component that can induce the mesenchymal-epithelial transition of cancer cells may represent a future adjuvant therapy after tumor resection.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Kudryasheva NS. For Special Issue "Molecular Mechanisms of Responses to Low-Intensity Exposures 2.0" of International Journal of Molecular Sciences. Int J Mol Sci 2023; 24:ijms24087665. [PMID: 37108823 PMCID: PMC10143466 DOI: 10.3390/ijms24087665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The intention of this Special Issue is to highlight the peculiarities of low-intensity/low-concentration exposures for organisms and to examine the molecular mechanisms of the organismal responses [...].
Collapse
Affiliation(s)
- Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center" SB RAS, Krasnoyarsk 660036, Russia
- Biophysics Department, Siberian Federal University, Krasnoyarsk 660041, Russia
| |
Collapse
|
8
|
Sinegubova EO, Kraevaya OA, Volobueva AS, Zhilenkov AV, Shestakov AF, Baykov SV, Troshin PA, Zarubaev VV. Water-Soluble Fullerene C 60 Derivatives Are Effective Inhibitors of Influenza Virus Replication. Microorganisms 2023; 11:microorganisms11030681. [PMID: 36985255 PMCID: PMC10053623 DOI: 10.3390/microorganisms11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
The influenza virus genome features a very high mutation rate leading to the rapid selection of drug-resistant strains. Due to the emergence of drug-resistant strains, there is a need for the further development of new potent antivirals against influenza with a broad activity spectrum. Thus, the search for a novel, effective broad-spectrum antiviral agent is a top priority of medical science and healthcare systems. In this paper, derivatives based on fullerenes with broad virus inhibiting activities in vitro against a panel of influenza viruses were described. The antiviral properties of water-soluble fullerene derivatives were studied. It was demonstrated that the library of compounds based on fullerenes has cytoprotective activity. Maximum virus-inhibiting activity and minimum toxicity were found with compound 2, containing residues of salts of 2-amino-3-cyclopropylpropanoic acid (CC50 > 300 µg/mL, IC50 = 4.73 µg/mL, SI = 64). This study represents the initial stage in a study of fullerenes as anti-influenza drugs. The results of the study lead us conclude that five leading compounds (1-5) have pharmacological prospects.
Collapse
Affiliation(s)
| | - Olga A Kraevaya
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
| | | | - Alexander V Zhilenkov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
| | - Alexander F Shestakov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physics & Chemical Engineering, Lomonosov Moscow State University, GSP 1, 1-51 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Pavel A Troshin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Prospekt Akademika Semenova, 142432 Chernogolovka, Russia
- Zhengzhou Research Institute, Harbin Institute of Technology, Longyuan East 7th 26, Jinshui District, Zhengzhou 450003, China
- Harbin Institute of Technology, No.92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 St. Petersburg, Russia
| |
Collapse
|
9
|
Kicheeva AG, Sushko ES, Bondarenko LS, Kydralieva KA, Pankratov DA, Tropskaya NS, Dzeranov AA, Dzhardimalieva GI, Zarrelli M, Kudryasheva NS. Functionalized Magnetite Nanoparticles: Characterization, Bioeffects, and Role of Reactive Oxygen Species in Unicellular and Enzymatic Systems. Int J Mol Sci 2023; 24:ijms24021133. [PMID: 36674650 PMCID: PMC9861541 DOI: 10.3390/ijms24021133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
The current study evaluates the role of reactive oxygen species (ROS) in bioeffects of magnetite nanoparticles (MNPs), such as bare (Fe3O4), humic acids (Fe3O4-HA), and 3-aminopropyltriethoxysilane (Fe3O4-APTES) modified MNPs. Mössbauer spectroscopy was used to identify the local surrounding for Fe atom/ions and the depth of modification for MNPs. It was found that the Fe3O4-HA MNPs contain the smallest, whereas the Fe3O4-APTES MNPs contain the largest amount of Fe2+ ions. Bioluminescent cellular and enzymatic assays were applied to monitor the toxicity and anti-(pro-)oxidant activity of MNPs. The contents of ROS were determined by a chemiluminescence luminol assay evaluating the correlations with toxicity/anti-(pro-)oxidant coefficients. Toxic effects of modified MNPs were found at higher concentrations (>10−2 g/L); they were related to ROS storage in bacterial suspensions. MNPs stimulated ROS production by the bacteria in a wide concentration range (10−15−1 g/L). Under the conditions of model oxidative stress and higher concentrations of MNPs (>10−4 g/L), the bacterial bioassay revealed prooxidant activity of all three MNP types, with corresponding decay of ROS content. Bioluminescence enzymatic assay did not show any sensitivity to MNPs, with negligible change in ROS content. The results clearly indicate that cell-membrane processes are responsible for the bioeffects and bacterial ROS generation, confirming the ferroptosis phenomenon based on iron-initiated cell-membrane lipid peroxidation.
Collapse
Affiliation(s)
- Arina G. Kicheeva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Ekaterina S. Sushko
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Institute of Physics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Lyubov S. Bondarenko
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Kamila A. Kydralieva
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Denis A. Pankratov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nataliya S. Tropskaya
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, 129010 Moscow, Russia
| | - Artur A. Dzeranov
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Sklifosovsky Research Institute for Emergency Medicine, 129010 Moscow, Russia
| | - Gulzhian I. Dzhardimalieva
- Department of General Engineering, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Mauro Zarrelli
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le Fermi, 1, 80055 Portici, Italy
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence: ; Tel.: +7-3912-494-242
| |
Collapse
|
10
|
Kolesnik OV, Rozhko TV, Kudryasheva NS. Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments. Int J Mol Sci 2022; 24:ijms24010410. [PMID: 36613854 PMCID: PMC9820739 DOI: 10.3390/ijms24010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Radioactive contaminants create problems all over world, involving marine ecosystems, with their ecological importance increasing in the future. The review focuses on bioeffects of a series of alpha and beta emitting radioisotopes (americium-241, uranium-(235 + 238), thorium-232, and tritium) and gamma radiation. Low-intensity exposures are under special consideration. Great attention has been paid to luminous marine bacteria as representatives of marine microorganisms and a conventional bioassay system. This bioassay uses bacterial bioluminescence intensity as the main testing physiological parameter; currently, it is widely applied due to its simplicity and sensitivity. Dependences of the bacterial luminescence response on the exposure time and irradiation intensity were reviewed, and applicability of hormetic or threshold models was discussed. A number of aspects of molecular intracellular processes under exposure to low-intensity radiation were analyzed: (a) changes in the rates of enzymatic processes in bacteria with the bioluminescent system of coupled enzymatic reactions of NADH:FMN-oxidoreductase and bacterial luciferase taken as an example; (b) consumption of an intracellular reducer, NADH; (c) active role of reactive oxygen species; (d) repairing of the DNA damage. The results presented confirm the function of humic substances as natural radioprotectors.
Collapse
Affiliation(s)
- Olga V. Kolesnik
- Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Tatiana V. Rozhko
- FSBEI HE V.F. Voino-Yasenetsky KrasSMU MOH, 660022 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence:
| |
Collapse
|
11
|
Sushko ES, Vnukova NG, Churilov GN, Kudryasheva NS. Endohedral Gd-Containing Fullerenol: Toxicity, Antioxidant Activity, and Regulation of Reactive Oxygen Species in Cellular and Enzymatic Systems. Int J Mol Sci 2022; 23:ijms23095152. [PMID: 35563539 PMCID: PMC9106034 DOI: 10.3390/ijms23095152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 01/20/2023] Open
Abstract
The Gd-containing metallofullerene derivatives are perspective magnetic resonance imaging contrast agents. We studied the bioeffects of a water-soluble fullerene derivative, gadolinium-endohedral fullerenol, with 40−42 oxygen groups (Gd@Fln). Bioluminescent cellular and enzymatic assays were applied to monitor toxicity and antioxidant activity of Gd@Fln in model solutions; bioluminescence was applied as a signaling physiological parameter. The Gd@Fln inhibited bioluminescence at high concentrations (>2·10−1 gL−1), revealing lower toxicity as compared to the previously studied fullerenols. Efficient activation of bioluminescence (up to almost 100%) and consumption of reactive oxygen species (ROS) in bacterial suspension were observed under low-concentration exposure to Gd@Fln (10−3−2·10−1 gL−1). Antioxidant capability of Gd@Fln was studied under conditions of model oxidative stress (i.e., solutions of model organic and inorganic oxidizers); antioxidant coefficients of Gd@Fln were determined at different concentrations and times of exposure. Contents of ROS were evaluated and correlations with toxicity/antioxidant coefficients were determined. The bioeffects of Gd@Fln were explained by hydrophobic interactions, electron affinity, and disturbing of ROS balance in the bioluminescence systems. The results contribute to understanding the molecular mechanism of “hormetic” cellular responses. Advantages of the bioluminescence assays to compare bioeffects of fullerenols based on their structural characteristics were demonstrated.
Collapse
Affiliation(s)
- Ekaterina S. Sushko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Correspondence: ; Tel.: +7-3912-494-242
| | - Natalia G. Vnukova
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Grigoriy N. Churilov
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
12
|
Adaptation of a Bacterial Bioluminescent Assay to Monitor Bioeffects of Gold Nanoparticles. Bioengineering (Basel) 2022; 9:bioengineering9020061. [PMID: 35200414 PMCID: PMC8868574 DOI: 10.3390/bioengineering9020061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Our current study aimed to adapt a bioluminescent bacteria-based bioassay to monitor the bioeffects of gold nanoparticles (AuNPs). Luminous marine bacteria Photobacterium phosphoreum and AuNPs modified with polyvinylpyrrolidone were employed; low-concentration (≤10−3 g/L) bioeffects of AuNPs were studied. Bioluminescence intensity was used as an indicator of physiological activity in bacteria. Two additional methods were used: reactive oxygen species (ROS) content was estimated with a chemiluminescent luminol method, and bacterial size was monitored using electron microscopy. The bacterial bioluminescent response to AuNPs corresponded to the “hormesis” model and involved time-dependent bioluminescence activation, as well as a pronounced increase in the number of enlarged bacteria. We found negative correlations between the time courses of bioluminescence and the ROS content in bacterial suspensions, demonstrating the relationship between bioluminescence activation and bacterial ROS consumption. The combined effects of AuNPs and a beta-emitting radionuclide, tritium, revealed suppression of bacterial bioluminescent activity (as compared to their individual effects) and a reduced percentage of enlarged bacteria. Therefore, we demonstrated that our bacteria-based bioluminescence assay is an appropriate tool to study the bioeffects of AuNPs; the bioeffects can be further classified within a unified framework for rapid bioassessment.
Collapse
|
13
|
Effects of Metallic and Carbon-Based Nanomaterials on Human Pancreatic Cancer Cell Lines AsPC-1 and BxPC-3. Int J Mol Sci 2021; 22:ijms222212100. [PMID: 34829982 PMCID: PMC8623931 DOI: 10.3390/ijms222212100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer, due to its asymptomatic development and drug-resistance, is difficult to cure. As many metallic and carbon-based nanomaterials have shown anticancer properties, we decided to investigate their potential use as anticancer agents against human pancreatic adenocarcinoma. The objective of the study was to evaluate the toxic properties of the following nanomaterials: silver (Ag), gold (Au), platinum (Pt), graphene oxide (GO), diamond (ND), and fullerenol (C60(OH)40) against the cell lines BxPC-3, AsPC-1, HFFF-2, and HS-5. The potential cytotoxic properties were evaluated by the assessment of the cell morphology, cell viability, and cell membrane damage. The cancer cell responses to GO and ND were analysed by determination of changes in the levels of 40 different pro-inflammatory proteins. Our studies revealed that the highest cytotoxicity was obtained after the ND treatment. Moreover, BxPC-3 cells were more sensitive to ND than AsPC-1 cells due to the ND-induced ROS production. Furthermore, in both of the cancer cell lines, ND caused an increased level of IL-8 and a decreased level of TIMP-2, whereas GO caused only decreased levels of TIMP-2 and ICAM-1 proteins. This work provides important data on the toxicity of various nanoparticles against pancreatic adenocarcinoma cell lines.
Collapse
|