1
|
Sipos TC, Attila K, Kocsis L, Bălașa A, Chinezu R, Baróti BÁ, Pap Z. Clinicopathological Parameters and Immunohistochemical Profiles in Correlation with MRI Characteristics in Glioblastomas. Int J Mol Sci 2024; 25:13043. [PMID: 39684754 DOI: 10.3390/ijms252313043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma is considered the most aggressive tumor of the central nervous system. The tumor microenvironment includes several components, such as endothelial cells, immune cells, and extracellular matrix components like matrix metalloproteinase-9 (MMP-9), which facilitates the proliferation of endothelial cells with pro-angiogenic roles. The MRI characteristics of glioblastomas can contribute to determining the prognosis. The aim of this study was to analyze the relationship between tumor angiogenesis in glioblastomas in association with MMP-9 immunoexpression. The results were correlated with the Ki-67 proliferation index, p53 immunoexpression, and the mutational status of IDH1 and ATRX, as well as MRI imaging data. This retrospective study included forty-four patients diagnosed with glioblastoma at the Department of Pathology, Târgu Mureș County Emergency Clinical Hospital. MMP-9 immunoexpression was observed in approximately half of the cases, more frequently in patients over 65 years old. Comparing the imaging data with the immunohistochemical results, we observed that the median tumor volume was higher in glioblastomas with IDH1 and p53 mutations, ATRX wild-type status, negative MMP-9 expression, and high Ki-67 proliferation indexes. The median values of MVD-CD34 and MVD-CD105 were higher in cases with extensive peritumoral edema in the contralateral hemisphere. Additionally, ATRX mutations were frequently associated with a more pronounced deviation of the median structures. To statistically validate the associations between MRI and the histopathological features of glioblastomas, further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Kövecsi Attila
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
- Pathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Adrian Bălașa
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Rareș Chinezu
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Beáta Ágota Baróti
- Radiology Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Radiology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| |
Collapse
|
2
|
Rajkhowa S, Jha S. The role of NLRP3 and NLRP12 inflammasomes in glioblastoma. Genes Immun 2024; 25:541-551. [PMID: 39604503 DOI: 10.1038/s41435-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Glioblastoma (GBM) is the deadliest malignant brain tumor, with a survival of less than 14 months after diagnosis. The highly invasive nature of GBM makes total surgical resection challenging, leading to tumor recurrence and declined survival. The heterocellular composition of the GBM reprograms its microenvironment, favoring tumor growth, proliferation, and migration. The innate immune cells in the GBM tumor microenvironment, including microglia, astrocytes, and macrophages, express pattern recognition receptors such as NLRs (Nucleotide-binding domain and leucine-rich repeat-containing) that sense pathogen- and damage-associated molecular patterns initiating inflammation. Upon activation, NLRP3 promotes inflammation by NLRP3 inflammasome formation. Auto-proteolytic cleavage and activation of Caspase-1 within the inflammasome leads to caspase-1-mediated cleavage, activation, and conversion of pro-IL-1ß and pro-IL-18 to IL-1ß and IL-18, leading to pyroptosis. In contrast, NLRP12 downregulates inflammatory responses in microglia and macrophages by regulating the NF-κB pathway. NLRP3 and NLRP12 have been implicated in the disease pathophysiology of several cancers with cell-context-dependent, pro- or anti-tumorigenic roles. In this review, we discuss the current literature on the mechanistic roles of NLRP3 and NLRP12 in GBM and the gaps in the scientific literature in the context of GBM pathophysiology with potential for targeted therapeutics.
Collapse
Affiliation(s)
- Sushmita Rajkhowa
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
3
|
Oliver L, Landais Y, Gratas C, Cartron PF, Paris F, Heymann D, Vallette FM, Serandour A. Transcriptional landscape of the interaction of human Mesenchymal Stem Cells with Glioblastoma in bioprinted co-cultures. Stem Cell Res Ther 2024; 15:424. [PMID: 39538257 PMCID: PMC11562700 DOI: 10.1186/s13287-024-04022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The interaction between mesenchymal stem cells (MSC) and Glioblastoma (GBM), although potentially of the highest importance, is ill-understood. This is due, in part, to the lack of relevant experimental models. The similarity between the in vitro situations and the in vivo situation can be improved by 3D co-culture as it reproduces key cell-cell interactions between the tumor microenvironment (TME) and cancer cells. METHODS MSC Can acquired characteristics of cancer associated fibroblasts (CAF) by being cultured with conditioned medium from GBM cultures and thus are called MSCCAF. We co Cultured MSCCAF with patient derived GBM in a scaffold 3D bioprinted model. We studied the response to current GBM therapy (e.g. Temozolomide + /Radiation) on the co cultures by bulk transcriptomic (RNA Seq) and epigenetic (ATAC Seq) analyses RESULTS: The transcriptomic modifications induced by standard GBM treatment in bioprinted scaffolds of mono- or co-cultures of GBM ± MSC can be analyzed. We found that mitochondrial encoded OXPHOS genes are overexpressed under these conditions and are modified by both co-culture and treatment (chemotherapy ± radiation). We have identified two new markers of MSC/GBM interactions, one epigenetically regulated (i.e. TREM-1) associated with an increased overall survival in GBM patients and another implicated in post-transcriptional regulation (i.e. the long non-coding RNA, miR3681HG), which is associated with a reduced overall survival in GBM patients.
Collapse
Affiliation(s)
- Lisa Oliver
- Nantes Université, INSERM, CRCI2NA-INSERM U1307, 4407, Nantes, France
- Centre Hospitalier-Universitaire (CHU) de Nantes, 44007, Nantes, France
| | - Yuna Landais
- Nantes Université, INSERM, CRCI2NA-INSERM U1307, 4407, Nantes, France
- One Biosciences, Paris, France
| | - Catherine Gratas
- Nantes Université, INSERM, CRCI2NA-INSERM U1307, 4407, Nantes, France
- Centre Hospitalier-Universitaire (CHU) de Nantes, 44007, Nantes, France
| | - Pierre-François Cartron
- Nantes Université, INSERM, CRCI2NA-INSERM U1307, 4407, Nantes, France
- Institut de Cancérologie de L'Ouest, 44805, Saint-Herblain, France
| | - François Paris
- Nantes Université, INSERM, CRCI2NA-INSERM U1307, 4407, Nantes, France
- Institut de Cancérologie de L'Ouest, 44805, Saint-Herblain, France
| | - Dominique Heymann
- Institut de Cancérologie de L'Ouest, 44805, Saint-Herblain, France
- Nantes Université, CNRS, US2B-UMR 6286, 44000, Nantes, France
| | - François M Vallette
- Nantes Université, INSERM, CRCI2NA-INSERM U1307, 4407, Nantes, France.
- Institut de Cancérologie de L'Ouest, 44805, Saint-Herblain, France.
| | - Aurelien Serandour
- Center for Research in Transplantation and Translational Immunology, Nantes Université, Ecole Centrale de Nantes, INSERM, CR2TI, UMR 1064, 4407, Nantes, France.
| |
Collapse
|
4
|
Cai D, Wang X, Hu W, Mo J, Liu H, Li X, Zheng X, Ding X, An J, Hua Y, Zhang J, Zhang K, Zhang C. The 3-Dimensional Intelligent Structured Light Technique: A New Registration Method in Stereotactic Neurosurgery. Oper Neurosurg (Hagerstown) 2024; 27:566-572. [PMID: 38687040 DOI: 10.1227/ons.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Surface-based facial scanning registration emerged as an essential registration method in the robot-assisted neuronavigation surgery, providing a marker-free way to align a patient's facial surface with the imaging data. The 3-dimensional (3D) structured light was developed as an advanced registration method based on surface-based facial scanning registration. We aspire to introduce the 3D structured light as a new registration method in the procedure of the robot-assisted neurosurgery and assess the accuracy, efficiency, and safety of this method by analyzing the relative operative results. METHODS We analyzed the results of 47 patients who underwent Ommaya reservoir implantation (n = 17) and stereotactic biopsy (n = 30) assisted by 3D structured light at our hospital from January 2022 to May 2023. The accuracy and additional operative results were analyzed. RESULTS For the Ommaya reservoir implantation, the target point error was 3.2 ± 2.2 mm and the entry point error was 3.3 ± 2.4 mm, while the operation duration was 35.8 ± 8.3 minutes. For the stereotactic biopsy, the target point error was 2.3 ± 1.3 mm and the entry point error was 2.7 ± 1.2 mm, while the operation duration was 24.5 ± 6.3 minutes. CONCLUSION The 3D structured light technique reduces the patients' discomfort and offers the advantage of a simpler procedure, which can improve the clinical efficiency with the sufficient accuracy and safety to meet the clinical requirements of the puncture and navigation.
Collapse
Affiliation(s)
- Du Cai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Wenhan Hu
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xixi Zheng
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xiaosheng Ding
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Juan An
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Yichun Hua
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| |
Collapse
|
5
|
Desai S, Thorat P, Majumdar A. A promise of nose to brain delivery of bevacizumab intranasal sol-gel formulation substantiated in rat C6 glioma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03536-3. [PMID: 39417842 DOI: 10.1007/s00210-024-03536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Glioblastoma is one of the rapidly spreading cancers, with its potent malignancy often linked to pronounced angiogenesis within tumors. To mitigate this vascularization profile, bevacizumab (Avastin®), a monoclonal antibody, has been utilized for its antiangiogenic activity. However, its effectiveness is hindered by challenges in crossing the blood-brain barrier and the risk of off-target organ toxicity. Delivering drugs directly from the nose to the brain through the olfactory or trigeminal nerves bypassing the blood-brain barrier offers enhanced bioavailability and a more precise targeting strategy. To overcome these challenges, we aimed to develop bevacizumab in situ gel loaded mesoporous silica nanoparticles for intranasal delivery and further examine their pharmacokinetic and pharmacodynamic characteristics. The intranasal gel of mesoporous silica nanoparticles loaded with bevacizumab was optimized and formulated using a factorial and quality by design approach. In the case of bevacizumab mesoporous silica nanoparticles, lower particle size and most negative zeta potential were selected as quality target product profiles which is important for drug loading on the mesoporous silica nanoparticles and also transport of these nanoparticles across the nasal mucosa to the brain. A design space with a multidimensional combination of input variables and process parameters has been demonstrated to assure quality. To optimize the design space and achieve the desired quality standards, the base catalyst and surfactant concentration were chosen as the critical process parameters, while particle size and zeta potential were identified as the critical quality attributes. The novel formulation was assessed for physicochemical parameters such as particle size, zeta potential, entrapment efficiency, appearance, color, consistency, and pH. Additionally, studies on in vitro release, ex vivo permeation, stability, nasal toxicity, organ safety, and bioavailability were conducted. The efficacy study was conducted in an orthotopic murine glioblastoma rat model in which C6 Luc cells were instilled in the striatum of the rat's brain. In vivo, bioluminescence imaging of brain tumors was carried out to observe the tumor regression after treatment with the intranasal and intravenous bevacizumab formulation. Biochemical parameters and histopathology were performed for organ safety studies. The optimized intranasal formulation exhibited an average particle size of 318.8 nm and a zeta potential of - 14.7 mV for the mesoporous silica nanoparticles. The formulation also demonstrated an entrapment efficiency of 91.34% and a loading capacity of 45.67%. Further pharmacokinetic studies revealed that the optimized intranasal bevacizumab formulation achieved a significantly higher brain concentration Cmax = 147.9 ng/ml, indicating improved bioavailability compared to rats administered with intravenous bevacizumab formulation (BEVATAS®), which had a Cmax of 127.2 ng/ml. Moreover, this nanoparticle formulation entirely mitigated systemic exposure to bevacizumab. Organ safety evaluation of different biochemical parameters and histopathological analyses revealed that the intranasal bevacizumab-treated group was showing less off-target organ toxicity compared to the group treated with intravenous bevacizumab formulation. Subsequently, the efficacy of this nanosystem was evaluated in an orthotopic glioblastoma rat model, monitoring tumor growth over time through in vivo bioluminescence imaging and assessing anti-angiogenic effects. Twenty-one days post-induction, mesoporous silica nanoparticles loaded with bevacizumab in situ gel exhibited a marked reduction in average bioluminescence radiance (4.39 × 103) from day 7 (1.35 × 107) emphasizing an enhanced anti-angiogenic effect compared to the group treated with intravenous bevacizumab formulation which showed a gradual decrease in average bioluminescence radiance (4.82 × 104) from day 7 (1.42 × 107). These results suggest that the proposed novel formulation of mesoporous silica nanoparticles loaded bevacizumab in situ gel could serve as a promising avenue to enhance glioblastoma treatment efficacy, thereby potentially improving patient quality of life and survival rates significantly. Furthermore, the success of this delivery method could open new avenues for treating other neurological disorders, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. By providing effective brain-targeted therapies, this approach has the potential to revolutionize treatment options and improve outcomes for a broad spectrum of neurological conditions.
Collapse
Affiliation(s)
- Siddhesh Desai
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Prajakta Thorat
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India.
| |
Collapse
|
6
|
Tsuboi N, Otani Y, Uneda A, Ishida J, Suruga Y, Matsumoto Y, Fujimura A, Fujii K, Matsui H, Kurozumi K, Date I, Michiue H. New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline. Cancer Med 2024; 13:e70288. [PMID: 39440923 PMCID: PMC11497491 DOI: 10.1002/cam4.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND AIMS Anti-angiogenic therapies prolong patient survival in some malignancies but not glioblastoma. We focused on the relationship between the differentiation of glioma stem like cells (GSCs) into tumor derived endothelial cells (TDECs) and, anti-angiogenic therapy resistance. Especially we aimed to elucidate the mechanisms of drug resistance of TDECs to anti-angiogenic inhibitors and identify novel anti-angiogenic drugs with clinical applications. RESULTS The mouse GSCs, 005, were differentiated into TDECs under hypoxic conditions, and TDECs had endothelial cell characteristics independent of the vascular endothelial growth factor (VEGF) pathway. In vivo, inhibition of the VEGF pathway had no anti-tumor effect and increased the percentage of TDECs in the 005 mouse model. Novel anti-angiogenic drugs for glioblastoma were evaluated using a tube formation assay and a drug repositioning strategy with existing blood-brain barrier permeable drugs. Drug screening revealed that the antidepressant sertraline inhibited tube formation of TDECs. Sertraline was administered to differentiated TDECs in vitro and 005 mouse models in vivo to evaluate genetic changes by RNA-Seq and tumor regression effects by immunohistochemistry and MRI. Sertraline reduced Lama4 and Ang2 expressions of TDEC, which play an important role in non-VEGF-mediated angiogenesis in tumors. The combination of a VEGF receptor inhibitor axitinib, and sertraline improved survival and reduced tumor growth in the 005 mouse model. CONCLUSION Collectively, our findings showed the diversity of tumor vascular endothelial cells across VEGF and non-VEGF pathways led to anti-angiogenic resistance. The combination of axitinib and sertraline can represent an effective anti-angiogenic therapy for glioblastoma with safe, low cost, and fast availability.
Collapse
Affiliation(s)
- Nobushige Tsuboi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
| | - Yoshihiro Otani
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsuhito Uneda
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joji Ishida
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yasuki Suruga
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yuji Matsumoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsushi Fujimura
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kentaro Fujii
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hideki Matsui
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kazuhiko Kurozumi
- Department of NeurosurgeryHamamatsu University School of MedicineShizuokaJapan
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | | |
Collapse
|
7
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2024:10.1038/s41551-024-01250-2. [PMID: 39304761 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
8
|
García-Hernández AP, Sánchez-Sánchez G, Carlos-Reyes A, López-Camarillo C. Functional roles of microRNAs in vasculogenic mimicry and resistance to therapy in human cancers: an update. Expert Rev Clin Immunol 2024; 20:913-926. [PMID: 38712535 DOI: 10.1080/1744666x.2024.2352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Vasculogenic mimicry (VM) alludes to the ability of cancer cells to organize on three-dimensional channel-like structures to obtain nutrients and oxygen. This mechanism confers an aggressive phenotype, metastatic potential, and resistance to chemotherapy resulting in a poor prognosis. Recent studies have been focused on the identification of microRNAs (miRNAs) that regulate the VM representing potential therapeutic targets in cancer. AREAS COVERED An overview of the roles of miRNAs on VM development and their functional relationships with tumor microenvironment. The functions of cancer stem-like cells in VM, and resistance to therapy are also discussed. Moreover, the modulation of VM by natural compounds is explored. The clinical significance of deregulated miRNAs as potential therapeutic targets in tumors showing VM is further highlighted. EXPERT OPINION The miRNAs are regulators of protein-encoding genes involved in VM; however, their specific expression signatures with clinical value in large cohorts of patients have not been established yet. We considered that genomic profiling of miRNAs could be useful to define some hallmarks of tumors such as stemness, drug resistance, and VM in cancer patients. However, additional studies are needed to establish the relevant role of miRNAs as effective therapeutic targets in tumors that have developed VM.
Collapse
Affiliation(s)
| | | | - Angeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Ciudad de México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México
| |
Collapse
|
9
|
Lim J, Santo BA, Baig AA, Ciecierska SSK, Donnelly B, Balghonaim S, Levy BR, Jaikumar V, Levy EI, Tutino VM, Siddiqui AH. Efficacy of intra-arterial carboplatin and bevacizumab in the C6 rat glioma model of glioblastoma multiforme. J Neurointerv Surg 2024:jnis-2024-021789. [PMID: 39084854 DOI: 10.1136/jnis-2024-021789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Utilizing an endovascular rat glioma model, this study aimed to analyze the efficacy of intra-arterial (IA) carboplatin and bevacizumab delivery with blood-brain barrier breakdown (BBBB) for glioblastoma treatment. METHODS C6-glioma cells were stereotactically injected into the left frontal lobe of Wistar rats. Tumor growth was confirmed on day 8 via MRI. On day 9, a microcatheter was navigated under fluoroscopy from the left femoral artery to the left internal carotid artery. A volume of 2.25 mL of 25% mannitol was administered, followed by either 10 mg/kg of bevacizumab or 2.4 mg/kg of carboplatin. Serial MRI was obtained post-treatment to assess tumor response via analysis of tumor size and radiomics. Histology was analyzed after termination. RESULTS Control tumor rats and IA mannitol treated tumor rats had fatal tumor growths, with survival until 19.75±2.21 and 36.3±15.1 days, respectively. Carboplatin and bevacizumab treated rats lived >40 days, after which they were euthanized. From serial MRI and histology, IA carboplatin treated rats exhibited tumor regression and resolution by day 35. In IA bevacizumab treated rats, there was tumor regression near the basal ganglia of the brain, closer to the IA chemotherapy injection site, which had reorganized growth patterns. From MRI, 29 unique radiomic features were significantly different between control and treated tumors (notably for total energy and skewness), and treatment responders had a distinct, early manifesting radiomic profile. CONCLUSION IA carboplatin and bevacizumab treatment resulted in varying degrees of tumor suppression, validating the first endovascular C6 glioma model as a reliable method to assess new IA therapies.
Collapse
Affiliation(s)
- Jaims Lim
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, Gates Vascular Institute, Buffalo, New York, USA
| | - Briana A Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Pathology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Ammad A Baig
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Shiau-Sing K Ciecierska
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Brianna Donnelly
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Sarah Balghonaim
- Department of Pathology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Bennett R Levy
- Department of Neurosurgery, New York University, New York, New York, USA
| | - Vinay Jaikumar
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Elad I Levy
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Neurosurgery, Gates Vascular Institute, Buffalo, New York, USA
- Department of Radiology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Vincent M Tutino
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Pathology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Adnan H Siddiqui
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Neurosurgery, Gates Vascular Institute, Buffalo, New York, USA
- Department of Radiology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| |
Collapse
|
10
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
11
|
Sipos TC, Kövecsi A, Kocsis L, Nagy-Bota M, Pap Z. Evaluation of Microvascular Density in Glioblastomas in Relation to p53 and Ki67 Immunoexpression. Int J Mol Sci 2024; 25:6810. [PMID: 38928515 PMCID: PMC11204252 DOI: 10.3390/ijms25126810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most aggressive tumor in the central nervous system, with a survival rate of less than 15 months despite multimodal therapy. Tumor recurrence frequently occurs after removal. Tumoral angiogenesis, the formation of neovessels, has a positive impact on tumor progression and invasion, although there are controversial results in the specialized literature regarding its impact on survival. This study aims to correlate the immunoexpression of angiogenesis markers (CD34, CD105) with the proliferation index Ki67 and p53 in primary and secondary glioblastomas. This retrospective study included 54 patients diagnosed with glioblastoma at the Pathology Department of County Emergency Clinical Hospital Târgu Mureș. Microvascular density was determined using CD34 and CD105 antibodies, and the results were correlated with the immunoexpression of p53, IDH1, ATRX and Ki67. The number of neoformed blood vessels varied among cases, characterized by different shapes and calibers, with endothelial cells showing modified morphology and moderate to marked pleomorphism. Neovessels with a glomeruloid aspect, associated with intense positivity for CD34 or CD105 in endothelial cells, were observed, characteristic of glioblastomas. Mean microvascular density values were higher for the CD34 marker in all cases, though there were no statistically significant differences compared to CD105. Mutant IDH1 and ATRX glioblastomas, wild-type p53 glioblastomas, and those with a Ki67 index above 20% showed a more abundant microvascular density, with statistical correlations not reaching significance. This study highlighted a variety of percentage intervals of microvascular density in primary and secondary glioblastomas using immunohistochemical markers CD34 and CD105, respectively, with no statistically significant correlation between evaluated microvascular density and p53 or Ki67.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mureș, Romania
| | - Attila Kövecsi
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mureș, Romania
- Pathology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Monica Nagy-Bota
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
| |
Collapse
|
12
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
13
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Nowicka Z, Rentzeperis F, Beck R, Tagal V, Pinto AF, Scanu E, Veith T, Cole J, Ilter D, Viqueira WD, Teer JK, Maksin K, Pasetto S, Abdalah MA, Fiandaca G, Prabhakaran S, Schultz A, Ojwang M, Barnholtz-Sloan JS, Farinhas JM, Gomes AP, Katira P, Andor N. Interactions between ploidy and resource availability shape clonal interference at initiation and recurrence of glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562670. [PMID: 37905142 PMCID: PMC10614845 DOI: 10.1101/2023.10.17.562670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Glioblastoma (GBM) is the most aggressive form of primary brain tumor. Complete surgical resection of GBM is almost impossible due to the infiltrative nature of the cancer. While no evidence for recent selection events have been found after diagnosis, the selective forces that govern gliomagenesis are strong, shaping the tumor's cell composition during the initial progression to malignancy with late consequences for invasiveness and therapy response. We present a mathematical model that simulates the growth and invasion of a glioma, given its ploidy level and the nature of its brain tissue micro-environment (TME), and use it to make inferences about GBM initiation and response to standard-of-care treatment. We approximate the spatial distribution of resource access in the TME through integration of in-silico modelling, multi-omics data and image analysis of primary and recurrent GBM. In the pre-malignant setting, our in-silico results suggest that low ploidy cancer cells are more resistant to starvation-induced cell death. In the malignant setting, between first and second surgery, simulated tumors with different ploidy compositions progressed at different rates. Whether higher ploidy predicted fast recurrence, however, depended on the TME. Historical data supports this dependence on TME resources, as shown by a significant correlation between the median glucose uptake rates in human tissues and the median ploidy of cancer types that arise in the respective tissues (Spearman r = -0.70; P = 0.026). Taken together our findings suggest that availability of metabolic substrates in the TME drives different cell fate decisions for cancer cells with different ploidy and shapes GBM disease initiation and relapse characteristics.
Collapse
Affiliation(s)
- Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | | | - Richard Beck
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Vural Tagal
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ana Forero Pinto
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Elisa Scanu
- Queen Mary University of London, London, United Kingdom
| | - Thomas Veith
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - Jackson Cole
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Jamie K. Teer
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Stefano Pasetto
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Giada Fiandaca
- Department of Cellular, Computational and Integrative Biology, University of Trento, Tento, Italy
| | - Sandhya Prabhakaran
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Andrew Schultz
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maureiq Ojwang
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jill S. Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology and Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Ana P. Gomes
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Noemi Andor
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
15
|
Dyshlovoy SA, Hauschild J, Venz S, Krisp C, Kolbe K, Zapf S, Heinemann S, Fita KD, Shubina LK, Makarieva TN, Guzii AG, Rohlfing T, Kaune M, Busenbender T, Mair T, Moritz M, Poverennaya EV, Schlüter H, Serdyuk V, Stonik VA, Dierlamm J, Bokemeyer C, Mohme M, Westphal M, Lamszus K, von Amsberg G, Maire CL. Rhizochalinin Exhibits Anticancer Activity and Synergizes with EGFR Inhibitors in Glioblastoma In Vitro Models. Mol Pharm 2023; 20:4994-5005. [PMID: 37733943 DOI: 10.1021/acs.molpharmaceut.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Laboratory of Biologically Active Compounds, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russian Federation
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
- Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald 17489, Germany
| | - Christoph Krisp
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katharina Kolbe
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Svenja Zapf
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Sarina Heinemann
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Krystian D Fita
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Larisa K Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Alla G Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tina Rohlfing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Moritz Kaune
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Thomas Mair
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manuela Moritz
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Ekaterina V Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Hartmut Schlüter
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Volodymyr Serdyuk
- Zentrum für Molekulare Neurobiologie (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Malte Mohme
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manfred Westphal
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Cecile L Maire
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
16
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
17
|
Yueyang M, Yaqin H, Guolian X, Wenjian Z, Yang J, Chen L, Haiyan C, Min C, Jianping D, Penggao D, Hongli Z, Liang W. Glioma angiogenesis is boosted by ELK3 activating the HIF-1[Formula: see text]/VEGF-A signaling axis. BMC Cancer 2023; 23:662. [PMID: 37452291 PMCID: PMC10347878 DOI: 10.1186/s12885-023-11069-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Clinical studies have shown that first-line use of anti-angiogenetic therapy can prolong progression-free survival but little progress has been made in extending the overall survival of the patients. We explored the role of ELK3 in glioma angiogenesis to improve and design more efficacious therapies. METHODS A tissue microarray and immunohistochemistry analysis were used to determine the expression of ELK3 protein in 400 glioma patients. Cell proliferation, metastasis, cell cycle, and apoptosis were monitored in U87 and U251 cells using CCK-8, EdU, transwell assays, and flow cytometry. A tube-formation assay, a rat aorta ring sprouting assay, and a matrigel plug assay were performed to examine the antiangiogenic activity of ELK3. An ELISA, Western blot, and correlation analysis of the CGGA dataset were used to detect the association between ELK3 and VEGF-A or ELK3 and HIF-1[Formula: see text]. Besides, orthotopic transplantation in nude mice and histopathological and immunological analysis of in vitro tumors were used to explore the effect of ELK3 on tumor progression and median survival. RESULTS ELK3 was upregulated in glioma tissues and associated with a poor prognosis. In vitro, ELK3 promoted cell proliferation and cell cycle progression, induced metastasis, and suppressed apoptosis. Then, silencing ELK3 inhibited VEGF-A expression and secretion by facilitating HIF-1[Formula: see text] degradation via ubiquitination. Finally, knockdown ELK3 inhibited tumor progression and angiogenesis in vitro and in vivo, as well as prolonged nude mice's median survival. CONCLUSIONS Our findings first evidenced that ELK3 is crucial for glioma because it promotes angiogenesis by activating the HIF-1[Formula: see text]/VEGF-A signaling axis. Therefore, we suggest that ELK3 is a prognostic marker with a great potential for glioma angiogenesis and ELK3-targeted therapeutic strategies might hold promise in improving the efficacy of anti-angiogenic therapies.
Collapse
Affiliation(s)
- Mou Yueyang
- College of Life Sciences, Northwest University, Xi’an, China
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Hu Yaqin
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xue Guolian
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhao Wenjian
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jiao Yang
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Li Chen
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cao Haiyan
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chao Min
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Deng Jianping
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Dai Penggao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhu Hongli
- College of Life Sciences, Northwest University, Xi’an, China
| | - Wang Liang
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
18
|
Boylan J, Byers E, Kelly DF. The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3994. [PMID: 38107346 PMCID: PMC10723753 DOI: 10.18103/mra.v11i6.3994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Malignant brain tumors are aggressive and difficult to treat. Glioblastoma is the most common and lethal form of primary brain tumor, often found in patients with no genetic predisposition. The median life expectancy for individuals diagnosed with this condition is 6 months to 2 years and there is no known cure. New paradigms in cancer biology implicate a small subset of tumor cells in initiating and sustaining these incurable brain tumors. Here, we discuss the heterogenous nature of glioblastoma and theories behind its capacity for therapy resistance and recurrence. Within the cancer landscape, cancer stem cells are thought to be both tumor initiators and major contributors to tumor heterogeneity and therapy evasion and such cells have been identified in glioblastoma. At the cellular level, disruptions in the delicate balance between differentiation and self-renewal spur transformation and support tumor growth. While rapidly dividing cells are more sensitive to elimination by traditional treatments, glioblastoma stem cells evade these measures through slow division and reversible exit from the cell cycle. At the molecular level, glioblastoma tumor cells exploit several signaling pathways to evade conventional therapies through improved DNA repair mechanisms and a flexible state of senescence. We examine these common evasion techniques while discussing potential molecular approaches to better target these deadly tumors. Equally important, the presented information encourages the idea of augmenting conventional treatments with novel glioblastoma stem cell-directed therapies, as eliminating these harmful progenitors holds great potential to modulate tumor recurrence.
Collapse
Affiliation(s)
- Jack Boylan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Delgado-Bellido D, Oliver FJ, Vargas Padilla MV, Lobo-Selma L, Chacón-Barrado A, Díaz-Martin J, de Álava E. VE-Cadherin in Cancer-Associated Angiogenesis: A Deceptive Strategy of Blood Vessel Formation. Int J Mol Sci 2023; 24:ijms24119343. [PMID: 37298296 DOI: 10.3390/ijms24119343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor growth depends on the vascular system, either through the expansion of blood vessels or novel adaptation by tumor cells. One of these novel pathways is vasculogenic mimicry (VM), which is defined as a tumor-provided vascular system apart from endothelial cell-lined vessels, and its origin is partly unknown. It involves highly aggressive tumor cells expressing endothelial cell markers that line the tumor irrigation. VM has been correlated with high tumor grade, cancer cell invasion, cancer cell metastasis, and reduced survival of cancer patients. In this review, we summarize the most relevant studies in the field of angiogenesis and cover the various aspects and functionality of aberrant angiogenesis by tumor cells. We also discuss the intracellular signaling mechanisms involved in the abnormal presence of VE-cadherin (CDH5) and its role in VM formation. Finally, we present the implications for the paradigm of tumor angiogenesis and how targeted therapy and individualized studies can be applied in scientific analysis and clinical settings.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - F J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
| | | | - Laura Lobo-Selma
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | | | - Juan Díaz-Martin
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Enrique de Álava
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
20
|
Maraqah HH, Abu-Asab MS, Lee HS, Aboud O. Astrocytoma and glioblastoma IDH1-wildtype cells colonize tumor vessels and deploy vascular mimicry. Ultrastruct Pathol 2023:1-8. [PMID: 37144386 DOI: 10.1080/01913123.2023.2205927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gliomas are the most prevalent type of malignant brain tumors with a very dismal prognosis. Angiogenesis in glioma has recently gotten more attention and its molecular aspects have been published; however, these were not complemented with ultrastructural evidence. Our ultrastructural examination of glioma vessels reveals several unique and critical features related to their mechanisms of progression and metastasis strategy. The detailed ultrastructural survey of 18 isocitrate dehydrogenase-wildtype (IDH1-wt) glioblastomas and 12 isocitrate dehydrogenase-mutant (IDH1-mt) High-grade gliomas indicated that tumor vessels of both types had undergone deformities such as the thickening of the vessel wall (VW) and proliferation of the basement membrane, contour distortions, abnormal and discontinuous basal lamina, tumor cells' invasion and colonization of VW, disappearance of endothelial cells (ECs), pericytes, and smooth muscle cells, as well as the formation of a continuous ring of tumor cells attached to the luminal side of VW in numerous cases. The latter feature is a clear sign of vascular mimicry (VM) that was previously suggested in gliomas but never shown by TEM. Additionally, the vascular invasion was carried out by a large number of tumor cells and was accompanied by the accumulation of tumor lipids in the vessels' lumina and VWs; these two features are distinct for gliomas and may alter the course of the clinical presentation and overall prognosis. This raises the issue of how to specifically target tumor cells involved in vascular invasion in order to optimize prognosis and overcome these mechanisms employed by the tumor cells.
Collapse
Affiliation(s)
- Haitham H Maraqah
- Medicine & Health Science Faculty, School of Medicine, An-Najah National University, Nablus, PS, Palestine
| | - Mones S Abu-Asab
- EM Lab, Biological Imaging Core, National Eye Institute/National Institutes of Health, Bethesda, MD, USA
| | - Han Sung Lee
- Department of Pathology and Laboratory Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Orwa Aboud
- Department of Neurology and Neurosurgery, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
21
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
22
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
23
|
Zhang Q, Zhao J, Xu T. Inhibition of eukaryotic initiation factor 4E by tomivosertib suppresses angiogenesis, growth, and survival of glioblastoma and enhances chemotherapy's efficacy. Fundam Clin Pharmacol 2023. [PMID: 36691859 DOI: 10.1111/fcp.12877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Glioblastoma is characterized by extensive vascularization and is highly resistant to current therapy. Identification of drugs that target tumor directly and angiogenesis processes present an effective therapeutic strategy for glioblastoma. Mnk kinase is required for the activation of eukaryotic initiation factor 4E (eIF4E), which mediates translation of oncogenic proteins. We investigated the effects of tomivosertib, a novel MAPK-interacting kinase (MNK) inhibitor, on glioblastoma angiogenesis, growth, and survival. We found that tomivosertib inhibited growth and induced caspase-dependent apoptosis in various glioblastoma cell lines. Tomivosertib disrupted glioblastoma endothelial cell capillary network formation, growth, and survival. Mechanistically, tomivosertib acted on glioblastoma via suppressing MNK-dependent eIF4E phosphorylation and activation in tumor and endothelial cells. We further found that temozolomide activated eIF4E and this was reversed by tomivosertib. Using glioblastoma xenograft mouse model, we demonstrated that temozolomide and tomivosertib combination had higher efficacy than tomivosertib alone. Of note, tomivosertib inhibited glioblastoma angiogenesis and decreased p-eIF4E level in mice. We finally showed that p-eIF4E activation was a common molecular feature in glioblastoma patients. Our pre-clinical findings suggest that tomivosertib is a useful addition to the treatment armamentarium for glioblastoma and that targeting MNK-eIF4E pathway represents a therapeutic strategy to overcome glioblastoma chemoresistance.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Juan Zhao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Tingwei Xu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 14 Dong Street, Xiangcheng District, Xiangyang, 441021, Hubei Province, China
| |
Collapse
|
24
|
Maraqah HH, Abu-Asab MS, Lee HS, Aboud O. Astrocytoma and IDH1-Wildtype Glioblastoma (GBM) Cells Colonize Tumor Vessels and Deploy Vascular Mimicry. RESEARCH SQUARE 2023:rs.3.rs-2456733. [PMID: 36712042 PMCID: PMC9882681 DOI: 10.21203/rs.3.rs-2456733/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gliomas are the most prevalent type of malignant brain tumors with a very dismal prognosis. Angiogenesis in glioma has recently gotten more attention and its molecular aspects have been published; however, these were not complemented with ultrastructural evidence. Our ultrastructural examination of glioma vessels reveals several unique and critical features related to their mechanisms of progression and metastasis strategy. The detailed ultrastructural survey of 18 IDH1 -wildtype glioblastomas (GBM) and 12 IDH1 -mutant High-grade gliomas indicated that tumor vessels of both types had undergone deformities such as the thickening of the vessel wall (VW) and proliferation of the basement membrane, contour distortions, abnormal and discontinuous basal lamina, tumor cells' invasion and colonization of VW, disappearance of endothelial cells (ECs), pericytes, and smooth muscle cells, as well as the formation of a continuous ring of tumor cells attached to the luminal side of VW in numerous cases. The latter feature is a clear sign of vascular mimicry (VM) that was previously suggested in gliomas but never shown by TEM. Additionally, the vascular invasion was carried out by a large number of tumor cells and was accompanied by the accumulation of tumor lipids in the vessels' lumina and VWs; these two features are distinct for gliomas and may alter the course of the clinical presentation and overall prognosis. This raises the issue of how to specifically target tumor cells involved in vascular invasion in order to optimize prognosis and overcome these mechanisms employed by the tumor cells.
Collapse
|
25
|
Annese T, Errede M, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Double Immunohistochemical Staining on Formalin-Fixed Paraffin-Embedded Tissue Samples to Study Vascular Co-option. Methods Mol Biol 2023; 2572:101-116. [PMID: 36161411 DOI: 10.1007/978-1-0716-2703-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31+ vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells. Results can be quantified by the Aperio Colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy.
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
26
|
Wang S, Shi H, Wang L, Loredo A, Bachilo SM, Wu W, Tian Z, Chen Y, Weisman RB, Zhang X, Cheng Z, Xiao H. Photostable Small-Molecule NIR-II Fluorescent Scaffolds that Cross the Blood-Brain Barrier for Noninvasive Brain Imaging. J Am Chem Soc 2022; 144:23668-23676. [PMID: 36511618 PMCID: PMC10010776 DOI: 10.1021/jacs.2c11223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The second near-infrared (NIR-II, 1000-1700 nm) fluorescent probes have significant advantages over visible or NIR-I (600-900 nm) imaging for both depth of penetration and level of resolution. Since the blood-brain barrier (BBB) prevents most molecules from entering the central nervous system, NIR-II dyes with large molecular frameworks have limited applications for brain imaging. In this work, we developed a series of boron difluoride (BF2) formazanate NIR-II dyes, which had tunable photophysical properties, ultrahigh photostability, excellent biological stability, and strong brightness. Modulation of the aniline moiety of BF2 formazanate dyes significantly enhances their abilities to cross the BBB for noninvasive brain imaging. Furthermore, the intact mouse brain imaging and dynamic dye diffusion across the BBB were monitored using these BF2 formazanate dyes in the NIR-II region. In murine glioblastoma models, these dyes can differentiate tumors from normal brain tissues. We anticipate that this new type of small molecule will find potential applications in creating probes and drugs relevant to theranostic for brain pathologies.
Collapse
Affiliation(s)
- Shichao Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Lushun Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - William Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Xuanjun Zhang
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305, United States.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Annese T, Errede M, d’Amati A, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Differential P-Glycoprotein/CD31 Expression as Markers of Vascular Co-Option in Primary Central Nervous System Tumors. Diagnostics (Basel) 2022; 12:diagnostics12123120. [PMID: 36553127 PMCID: PMC9777393 DOI: 10.3390/diagnostics12123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vascular co-option is one of the main features of brain tumor progression. It is identified using histopathological analysis, but no antibody-specific markers were found, and no universally accepted histological features were defined. METHODS We employed double immunohistochemical stainings for CD31, P-gp, S100A10, and mitochondria on formalin-fixed, paraffin-embedded human samples of IDH-WT glioblastoma, IDH-mutant astrocytoma, and meningioma to study vascular co-option across different brain tumors and across normal, peritumoral, and intratumoral areas using the Aperio colocalization algorithm, which is a valid and robust method to handle and investigate large data sets. RESULTS The results have shown that (i) co-opted vessels could be recognized by the presence of metabolically overactive (evaluated as mitochondria expression) and P-gp+ or S100A10+ tumor cells surrounding CD31+ endothelial cells; (ii) vascular co-option occurs in the intratumoral area of meningioma and astrocytoma; and (iii) vascular co-option is prevalent in peritumoral glioblastoma area. CONCLUSIONS The described approach identifies new markers for cellular components of the vessel wall and techniques that uncover the order and localization of vascularization mechanisms, which may contribute to developing new and possibly more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence:
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
28
|
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New Directions in the Therapy of Glioblastoma. Cancers (Basel) 2022; 14:5377. [PMID: 36358795 PMCID: PMC9655599 DOI: 10.3390/cancers14215377] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common histologic type of all gliomas and contributes to 57.3% of all cases. Despite the standard management based on surgical resection and radiotherapy, it is related to poor outcome, with a 5-year relative survival rate below 6.9%. In order to improve the overall outcome for patients, the new therapeutic strategies are needed. Herein, we describe the current state of knowledge on novel targeted therapies in glioblastoma. Based on recent studies, we compared treatment efficacy measured by overall survival and progression-free survival in patients treated with selected potential antitumor drugs. The results of the application of the analyzed inhibitors are highly variable despite the encouraging conclusions of previous preclinical studies. This paper focused on drugs that target major glioblastoma kinases. As far, the results of some BRAF inhibitors are favorable. Vemurafenib demonstrated a long-term efficacy in clinical trials while the combination of dabrafenib and trametinib improves PFS compared with both vemurafenib and dabrafenib alone. There is no evidence that any MEK inhibitor is effective in monotherapy. According to the current state of knowledge, BRAF and MEK inhibition are more advantageous than BRAF inhibitor monotherapy. Moreover, mTOR inhibitors (especially paxalisib) may be considered a particularly important group. Everolimus demonstrated a partial response in a significant proportion of patients when combined with bevacizumab, however its actual role in the treatment is unclear. Neither nintedanib nor pemigatinib were efficient in treatment of GBM. Among the anti-VEGF drugs, bevacizumab monotherapy was a well-tolerated option, significantly associated with anti-GBM activity in patients with recurrent GBM. The efficacy of aflibercept and pazopanib in monotherapy has not been demonstrated. Apatinib has been proven to be effective and tolerable by a single clinical trial, but more research is needed. Lenvatinib is under trial. Finally, promising results from a study with regorafenib may be confirmed by the ongoing randomized AGILE trial. The studies conducted so far have provided a relatively wide range of drugs, which are at least well tolerated and demonstrated some efficacy in the randomized clinical trials. The comprehensive understanding of the molecular biology of gliomas promises to further improve the treatment outcomes of patients.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Marek Mazurek
- Department of Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Wieteska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Monika Wacławska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
29
|
Buccarelli M, Castellani G, Ricci-Vitiani L. Glioblastoma-Specific Strategies of Vascularization: Implications in Anti-Angiogenic Therapy Resistance. J Pers Med 2022; 12:jpm12101625. [PMID: 36294763 PMCID: PMC9604754 DOI: 10.3390/jpm12101625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis has long been implicated as a crucial process in GBM growth and progression. GBM can adopt several strategies to build up its abundant and aberrant vasculature. Targeting GBM angiogenesis has gained more and more attention in anti-cancer therapy, and many strategies have been developed to interfere with this hallmark. However, recent findings reveal that the effects of anti-angiogenic treatments are temporally limited and that tumors become refractory to therapy and more aggressive. In this review, we summarize the GBM-associated neovascularization processes and their implication in drug resistance mechanisms underlying the transient efficacy of current anti-angiogenic therapies. Moreover, we describe potential strategies and perspectives to overcome the mechanisms adopted by GBM to develop resistance to anti-angiogenic therapy as new potential therapeutic approaches.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del S. Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
30
|
Kerhervé M, Rosińska S, Trillet K, Zeinaty A, Feyeux M, Nedellec S, Gavard J. Neuropilin-1 modulates the 3D invasive properties of glioblastoma stem-like cells. Front Cell Dev Biol 2022; 10:981583. [PMID: 36204684 PMCID: PMC9530787 DOI: 10.3389/fcell.2022.981583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a rare, yet devastating, primary brain tumor in adults. Current treatments remain generally ineffective and GBM almost invariably recurs, resulting in median survival of 15 months. This high malignancy sources notably from the resilience and invasive capabilities of tumor cells. Within GBM, exists a population of self-sustaining transformed cells with stem-like properties (GSCs), which are thought to be responsible for tumor initiation, growth, and invasion, as well as recurrence. In the tumor microenvironment, GSCs might be found in the vicinity of brain endothelial cells, which provide a protective habitat. Likewise, these resistant, quiescent GSCs may accumulate in hypoxic zones, away from the perivascular niche, or travel towards the healthy brain parenchyma, by eminently co-opting neuro-vascular tracks. Herein, we established an ex vivo model to explore GSC invasive behavior. We found that patient-derived cells massively invade the collagen matrix. In addition, we described that the glycoprotein Neuropilin-1 (NRP1) contributes to GSC spreading and invasion. Indeed, both RNA interference-mediated silencing and CRISPR-mediated gene editing deletion of NRP1 strongly impaired the 3D invasive properties of patient-derived GSCs and their close localization to the brain blood vessels. Of note, other typical features of GSCs, such as expansion and self-renewal were maintained. From a mechanistic standpoint, this biological effect might rely on the expression of the β3 subunit integrin cell-extracellular matrix adhesive receptor. Our data, therefore, propose a reliable approach to explore invasive properties of patient glioma cells ex vivo and identify NRP1 as a mediator in this malignant process.
Collapse
Affiliation(s)
- Mathilde Kerhervé
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Sara Rosińska
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Kilian Trillet
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Alya Zeinaty
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
- Institut de Cancérologie de L’Ouest (ICO), Angers, France
- *Correspondence: Julie Gavard,
| |
Collapse
|
31
|
Ghosh M, Lenkiewicz AM, Kaminska B. The Interplay of Tumor Vessels and Immune Cells Affects Immunotherapy of Glioblastoma. Biomedicines 2022; 10:biomedicines10092292. [PMID: 36140392 PMCID: PMC9496044 DOI: 10.3390/biomedicines10092292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapies with immune checkpoint inhibitors or adoptive cell transfer have become powerful tools to treat cancer. These treatments act via overcoming or alleviating tumor-induced immunosuppression, thereby enabling effective tumor clearance. Glioblastoma (GBM) represents the most aggressive, primary brain tumor that remains refractory to the benefits of immunotherapy. The immunosuppressive immune tumor microenvironment (TME), genetic and cellular heterogeneity, and disorganized vasculature hinder drug delivery and block effector immune cell trafficking and activation, consequently rendering immunotherapy ineffective. Within the TME, the mutual interactions between tumor, immune and endothelial cells result in the generation of positive feedback loops, which intensify immunosuppression and support tumor progression. We focus here on the role of aberrant tumor vasculature and how it can mediate hypoxia and immunosuppression. We discuss how immune cells use immunosuppressive signaling for tumor progression and contribute to the development of resistance to immunotherapy. Finally, we assess how a positive feedback loop between vascular normalization and immune cells, including myeloid cells, could be targeted by combinatorial therapies with immune checkpoint blockers and sensitize the tumor to immunotherapy.
Collapse
|
32
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
33
|
Wan W, Zhang X, Huang C, Chen L, Yang X, Bao K, Peng T. Preclinical anti-angiogenic and anti-cancer activities of BAY1143269 in glioblastoma via targeting oncogenic protein expression. Pharmacol Res Perspect 2022; 10:e00981. [PMID: 35796398 PMCID: PMC9260954 DOI: 10.1002/prp2.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma angiogenesis is critical for tumor growth, making it an appealing target for treatment development. BAY1143269 is a novel inhibitor of mitogen-activated protein kinase interacting serine/threonine-protein kinase 1 (MKN1) and has potent anti-cancer activity. We identified BAY1143269 as an angiogenesis inhibitor, by in vitro and in vivo glioblastoma angiogenesis models. BAY1143269 inhibited the capillary network formation of glioblastoma microvascular endothelial cells (GMECs), particularly the early stage of tubular structure formation. It also inhibited migration and proliferation, and induced apoptosis of GMECs isolated from glioblastoma patients. We found that BAY1143269 acted on GMECs by suppressing the eukaryotic translation initiation factor 4E (eIF4E) and eIF4E-mediated expression of oncogenic proteins, including those involved in cell cycle, epithelial-mesenchymal transition (EMT), and pro-survival. In addition, BAY1143269 suppressed eIF4E phosphorylation, inhibited proliferation, and induced apoptosis of glioblastoma cells. Interestingly, it reduced vascular endothelial growth factor (VEGF) level in tumor cells and culturing medium, demonstrating the inhibitory effect of BAY1143269 on tumor proangiogenic microenvironment. We finally challenged BAY1143269 on the glioblastoma xenograft mice model and observed a significant tumor growth reduction without toxicity in mice receiving oral BAY1143269. Immunoblotting analysis demonstrated significantly less phosphorylated-eIF4E (p-eIF4E), cluster of differentiation 31 (CD31) (microvascular endothelial cell marker), and VEGF in tumors from drug-treated mice. In summary, the inhibition of glioblastoma angiogenesis with BAY1143269 may provide an alternative approach for anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Weifeng Wan
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xin Zhang
- Department of NeurosurgeryLuzhou People's HospitalLuzhouPeople's Republic of China
| | - Changren Huang
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Ligang Chen
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaobo Yang
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Kunyang Bao
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Tangming Peng
- Department of NeurosurgeryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
- Sichuan Clinical Research Center for NeurosurgeryLuzhouChina
- Academician (Expert) Workstation of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryAffiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
34
|
Solar P, Hendrych M, Barak M, Valekova H, Hermanova M, Jancalek R. Blood-Brain Barrier Alterations and Edema Formation in Different Brain Mass Lesions. Front Cell Neurosci 2022; 16:922181. [PMID: 35910247 PMCID: PMC9334679 DOI: 10.3389/fncel.2022.922181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Differential diagnosis of brain lesion pathologies is complex, but it is nevertheless crucial for appropriate clinical management. Advanced imaging methods, including diffusion-weighted imaging and apparent diffusion coefficient, can help discriminate between brain mass lesions such as glioblastoma, brain metastasis, brain abscesses as well as brain lymphomas. These pathologies are characterized by blood-brain barrier alterations and have been extensively studied. However, the changes in the blood-brain barrier that are observed around brain pathologies and that contribute to the development of vasogenic brain edema are not well described. Some infiltrative brain pathologies such as glioblastoma are characterized by glioma cell infiltration in the brain tissue around the tumor mass and thus affect the nature of the vasogenic edema. Interestingly, a common feature of primary and secondary brain tumors or tumor-like brain lesions characterized by vasogenic brain edema is the formation of various molecules that lead to alterations of tight junctions and result in blood-brain barrier damage. The resulting vasogenic edema, especially blood-brain barrier disruption, can be visualized using advanced magnetic resonance imaging techniques, such as diffusion-weighted imaging and apparent diffusion coefficient. This review presents a comprehensive overview of blood-brain barrier changes contributing to the development of vasogenic brain edema around glioblastoma, brain metastases, lymphomas, and abscesses.
Collapse
Affiliation(s)
- Peter Solar
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, Brno, Czechia
| | - Michal Hendrych
- First Department of Pathology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
- First Department of Pathology, St. Anne’s University Hospital, Brno, Czechia
| | - Martin Barak
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, Brno, Czechia
| | - Hana Valekova
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, Brno, Czechia
| | - Marketa Hermanova
- First Department of Pathology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
- First Department of Pathology, St. Anne’s University Hospital, Brno, Czechia
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, Brno, Czechia
- *Correspondence: Radim Jancalek,
| |
Collapse
|
35
|
Bailo M, Pecco N, Callea M, Scifo P, Gagliardi F, Presotto L, Bettinardi V, Fallanca F, Mapelli P, Gianolli L, Doglioni C, Anzalone N, Picchio M, Mortini P, Falini A, Castellano A. Decoding the Heterogeneity of Malignant Gliomas by PET and MRI for Spatial Habitat Analysis of Hypoxia, Perfusion, and Diffusion Imaging: A Preliminary Study. Front Neurosci 2022; 16:885291. [PMID: 35911979 PMCID: PMC9326318 DOI: 10.3389/fnins.2022.885291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTumor heterogeneity poses major clinical challenges in high-grade gliomas (HGGs). Quantitative radiomic analysis with spatial tumor habitat clustering represents an innovative, non-invasive approach to represent and quantify tumor microenvironment heterogeneity. To date, habitat imaging has been applied mainly on conventional magnetic resonance imaging (MRI), although virtually extendible to any imaging modality, including advanced MRI techniques such as perfusion and diffusion MRI as well as positron emission tomography (PET) imaging.ObjectivesThis study aims to evaluate an innovative PET and MRI approach for assessing hypoxia, perfusion, and tissue diffusion in HGGs and derive a combined map for clustering of intra-tumor heterogeneity.Materials and MethodsSeventeen patients harboring HGGs underwent a pre-operative acquisition of MR perfusion (PWI), Diffusion (dMRI) and 18F-labeled fluoroazomycinarabinoside (18F-FAZA) PET imaging to evaluate tumor vascularization, cellularity, and hypoxia, respectively. Tumor volumes were segmented on fluid-attenuated inversion recovery (FLAIR) and T1 post-contrast images, and voxel-wise clustering of each quantitative imaging map identified eight combined PET and physiologic MRI habitats. Habitats’ spatial distribution, quantitative features and histopathological characteristics were analyzed.ResultsA highly reproducible distribution pattern of the clusters was observed among different cases, particularly with respect to morphological landmarks as the necrotic core, contrast-enhancing vital tumor, and peritumoral infiltration and edema, providing valuable supplementary information to conventional imaging. A preliminary analysis, performed on stereotactic bioptic samples where exact intracranial coordinates were available, identified a reliable correlation between the expected microenvironment of the different spatial habitats and the actual histopathological features. A trend toward a higher representation of the most aggressive clusters in WHO (World Health Organization) grade IV compared to WHO III was observed.ConclusionPreliminary findings demonstrated high reproducibility of the PET and MRI hypoxia, perfusion, and tissue diffusion spatial habitat maps and correlation with disease-specific histopathological features.
Collapse
Affiliation(s)
- Michele Bailo
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicolò Pecco
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Paola Scifo
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Presotto
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Federico Fallanca
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi Gianolli
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Nicoletta Anzalone
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Antonella Castellano,
| |
Collapse
|
36
|
Alpuim Costa D, Sampaio-Alves M, Netto E, Fernandez G, Oliveira E, Teixeira A, Daniel PM, Bernardo GS, Amaro C. Hyperbaric Oxygen Therapy as a Complementary Treatment in Glioblastoma-A Scoping Review. Front Neurol 2022; 13:886603. [PMID: 35847231 PMCID: PMC9283648 DOI: 10.3389/fneur.2022.886603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. The mainstay of management for GBM is surgical resection, radiation (RT), and chemotherapy (CT). Even with optimized multimodal treatment, GBM has a high recurrence and poor survival rates ranging from 12 to 24 months in most patients. Recently, relevant advances in understanding GBM pathophysiology have opened new avenues for therapies for recurrent and newly diagnosed diseases. GBM's hypoxic microenvironment has been shown to be highly associated with aggressive biology and resistance to RT and CT. Hyperbaric oxygen therapy (HBOT) may increase anticancer therapy sensitivity by increasing oxygen tension within the hypoxic regions of the neoplastic tissue. Previous data have investigated HBOT in combination with cytostatic compounds, with an improvement of neoplastic tissue oxygenation, inhibition of HIF-1α activity, and a significant reduction in the proliferation of GBM cells. The biological effect of ionizing radiation has been reported to be higher when it is delivered under well-oxygenated rather than anoxic conditions. Several hypoxia-targeting strategies reported that HBOT showed the most significant effect that could potentially improve RT outcomes, with higher response rates and survival and no serious adverse events. However, further prospective and randomized studies are necessary to validate HBOT's effectiveness in the 'real world' GBM clinical practice.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Centro Hiperbárico de Cascais, Cascais, Portugal
| | - Mafalda Sampaio-Alves
- Faculty of Medicine, University of Porto, Oporto, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
| | - Eduardo Netto
- Radioncology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), E.P.E., Lisbon, Portugal
| | | | - Edson Oliveira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Neurosurgery Department, Cluster CUF Descobertas, Lisbon, Portugal
| | - Andreia Teixeira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Pedro Modas Daniel
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Guilherme Silva Bernardo
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Urology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | - Carla Amaro
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Otorhinolaryngology Department, CUF Descobertas, Lisbon, Portugal
| |
Collapse
|
37
|
Testa E, Palazzo C, Mastrantonio R, Viscomi MT. Dynamic Interactions between Tumor Cells and Brain Microvascular Endothelial Cells in Glioblastoma. Cancers (Basel) 2022; 14:3128. [PMID: 35804908 PMCID: PMC9265028 DOI: 10.3390/cancers14133128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
GBM is the most aggressive brain tumor among adults. It is characterized by extensive vascularization, and its further growth and recurrence depend on the formation of new blood vessels. In GBM, tumor angiogenesis is a multi-step process involving the proliferation, migration and differentiation of BMECs under the stimulation of specific signals derived from the cancer cells through a wide variety of communication routes. In this review, we discuss the dynamic interaction between BMECs and tumor cells by providing evidence of how tumor cells hijack the BMECs for the formation of new vessels. Tumor cell-BMECs interplay involves multiple routes of communication, including soluble factors, such as chemokines and cytokines, direct cell-cell contact and extracellular vesicles that participate in and fuel this cooperation. We also describe how this interaction is able to modify the BMECs structure, metabolism and physiology in a way that favors tumor growth and invasiveness. Finally, we briefly reviewed the recent advances and the potential future implications of some high-throughput 3D models to better understanding the complexity of BMECs-tumor cell interaction.
Collapse
Affiliation(s)
- Erika Testa
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Claudia Palazzo
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Roberta Mastrantonio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Maria Teresa Viscomi
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
- IRCCS, Fondazione Policlinico Universitario “Agostino Gemelli”, L.go A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
38
|
Fu X, Xiong B, Zhao M, Wan W, Zhang S, Wu X, Xu J. Quinacrine is active in preclinical models of glioblastoma through suppressing angiogenesis, inducing oxidative stress and activating AMPK. Toxicol In Vitro 2022; 83:105420. [PMID: 35724837 DOI: 10.1016/j.tiv.2022.105420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
The poor prognosis of glioblastoma requires new innovative treatment strategies. We and others have shown that targeting tumor as well as angiogenesis in glioblastoma are effective therapeutic strategies. In line with these efforts, this work reveals that Quinacrine, an antimalarial drug, is a dual inhibitor of angiogenesis and glioblastoma. Using multiple glioblastoma cell lines, we found that Quinacrine inhibited proliferation and induced apoptosis in these cells, and acted in synergy with Temozolomide. Quinacrine potently inhibited tubular structure formations of glioblastoma microvascular endothelial cell (GMVEC) isolated from glioblastoma patients, especially for early stage tubular structure formation. Although Quinacrine induces apoptosis in GMVEC, the anti-angiogenic activity of Quinacrine is independent of its pro-apoptotic activity in GMVECs. Quinacrine inhibits glioblastoma angiogenesis and growth in vivo, and acts synergistically with Temozolomide in inhibiting glioblastoma growth in mice. Mechanistically, we found that Quinacrine acts on glioblastoma through inducing oxidative stress, impairing mitochondrial function and activating AMP-activated protein kinase (AMPK). Our work is the first to demonstrate the anti-angiogenic activity of Quinacrine. Our findings highlight Quinacrine as an attractive candidate to support treatment of glioblastoma.
Collapse
Affiliation(s)
- Xiaohong Fu
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bo Xiong
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Min Zhao
- Department of Pharmacy, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Weifeng Wan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shaofu Zhang
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Xuedong Wu
- Department of Neurosurgery, The First People's Hospital of Zunyi, Zunyi, People's Republic of China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
39
|
Advances in Endothelial Cell Biology: From Knowledge to Control. Int J Mol Sci 2022; 23:ijms23126403. [PMID: 35742847 PMCID: PMC9224320 DOI: 10.3390/ijms23126403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
|
40
|
Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The Vascular Microenvironment in Glioblastoma: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061285. [PMID: 35740307 PMCID: PMC9219822 DOI: 10.3390/biomedicines10061285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial–tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Correspondence:
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| |
Collapse
|
41
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
42
|
Setlai BP, Hull R, Reis RM, Agbor C, Ambele MA, Mulaudzi TV, Dlamini Z. MicroRNA Interrelated Epithelial Mesenchymal Transition (EMT) in Glioblastoma. Genes (Basel) 2022; 13:244. [PMID: 35205289 PMCID: PMC8872331 DOI: 10.3390/genes13020244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that are 20-23 nucleotides in length, functioning as regulators of oncogenes or tumor suppressor genes. They are molecular modulators that regulate gene expression by suppressing gene translation through gene silencing/degradation, or by promoting translation of messenger RNA (mRNA) into proteins. Circulating miRNAs have attracted attention as possible prognostic markers of cancer, which could aid in the early detection of the disease. Epithelial to mesenchymal transition (EMT) has been implicated in tumorigenic processes, primarily by promoting tumor invasiveness and metastatic activity; this is a process that could be manipulated to halt or prevent brain metastasis. Studies show that miRNAs influence the function of EMT in glioblastomas. Thus, miRNA-related EMT can be exploited as a potential therapeutic target in glioblastomas. This review points out the interrelation between miRNA and EMT signatures, and how they can be used as reliable molecular signatures for diagnostic purposes or targeted therapy in glioblastomas.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| | - Rui Manuel Reis
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Cyril Agbor
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Melvin Anyasi Ambele
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, P.O. Box 1266, Pretoria 0001, South Africa;
- Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa; (C.A.); (T.V.M.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.H.); (R.M.R.)
| |
Collapse
|
43
|
Gravina GL, Colapietro A, Mancini A, Rossetti A, Martellucci S, Ventura L, Di Franco M, Marampon F, Mattei V, Biordi LA, Otterlei M, Festuccia C. ATX-101, a Peptide Targeting PCNA, Has Antitumor Efficacy Alone or in Combination with Radiotherapy in Murine Models of Human Glioblastoma. Cancers (Basel) 2022; 14:289. [PMID: 35053455 PMCID: PMC8773508 DOI: 10.3390/cancers14020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Cellular Pathology, University of L’Aquila, 67100 L’Aquila, Italy;
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Luca Ventura
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Martina Di Franco
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Medical Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marit Otterlei
- APIM Therapeutics A/S, N-7100 Rissa, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7006 Trondheim, Norway
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| |
Collapse
|
44
|
SLUG and Truncated TAL1 Reduce Glioblastoma Stem Cell Growth Downstream of Notch1 and Define Distinct Vascular Subpopulations in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13215393. [PMID: 34771555 PMCID: PMC8582547 DOI: 10.3390/cancers13215393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive form of brain tumor and is still incurable. These neoplasms are particularly difficult to treat efficiently because of their highly heterogeneous and resistant characteristics. Advances in genomics have highlighted the complex molecular landscape of these tumors and the need to further develop effective and targeted therapies for each patient. A specific population of cells with enriched stem cell properties within tumors, i.e., glioblastoma stem cells (GSC), drives this cellular heterogeneity and therapeutical resistance, and thus constitutes an attractive target for the design of innovative treatments. However, the signals driving the maintenance and resistance of these cells are still unclear. We provide new findings regarding the expression of two transcription factors in these cells and directly in glioblastoma patient samples. We show that these proteins downregulate GSC growth and ultimately participate in the progression of gliomas. The forthcoming results will contribute to a better understanding of gliomagenesis. Abstract Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-β1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.
Collapse
|
45
|
Shaik S, Maegawa S, Gopalakrishnan V. Medulloblastoma: novel insights into emerging therapeutic targets. Expert Opin Ther Targets 2021; 25:615-619. [PMID: 34602009 DOI: 10.1080/14728222.2021.1982896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shavali Shaik
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shinji Maegawa
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|