1
|
Krummeich J, Nardi L, Caliendo C, Aschauer D, Engelhardt V, Arlt A, Maier J, Bicker F, Kwiatkowski MD, Rolski K, Vincze K, Schneider R, Rumpel S, Gerber S, Schmeisser MJ, Schweiger S. Premature cognitive decline in a mouse model of tuberous sclerosis. Aging Cell 2024; 23:e14318. [PMID: 39192595 PMCID: PMC11634721 DOI: 10.1111/acel.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2+/- animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.
Collapse
Affiliation(s)
- J. Krummeich
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Bioscientia Institut für Medizinische Diagnostik GmbH HumangenetikIngelheimGermany
| | - L. Nardi
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - C. Caliendo
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - D. Aschauer
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - V. Engelhardt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - A. Arlt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Institute for Genomic Statistics and BioinformaticsUniversity of BonnBonnGermany
| | - J. Maier
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - F. Bicker
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - K. Rolski
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - K. Vincze
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - R. Schneider
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - S. Rumpel
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Gerber
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - M. J. Schmeisser
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Schweiger
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Leibniz Institute of Resilience ResearchMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
2
|
Shin HJ, Lee S, Kim SH, Lee JS, Oh JY, Ko A, Kang HC. Genotypic and phenotypic analysis of Korean patients with tuberous sclerosis complex. Neurogenetics 2024; 25:471-479. [PMID: 39110368 DOI: 10.1007/s10048-024-00777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/24/2024] [Indexed: 11/05/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. The aim of this study was to analyze the genotypes and phenotypes of Korean patients diagnosed with TSC and expand our understanding of this disorder. This retrospective observational study included 331 patients clinically diagnosed with TSC between November 1990 and April 2023 at Severance Children's Hospital, Seoul, South Korea. The demographic and clinical characteristics of the patients were investigated. Thirty novel variants were identified. Of the 331 patients, 188 underwent genetic testing, and genotype-phenotype variation was analyzed according to the type of gene mutation and functional domain. Fourty-nine patients (49/188, 26%) were had TSC1 mutations, 103 (55%) had TSC2 mutations, and 36 (19%) had no mutation identified (NMI). Hotspots were identified in exons 8 of TSC1 and exons 35 and 41 of TSC2. Patients with TSC2 mutations exhibited a significantly younger age at the time of seizure onset and had refractory epilepsy. Infantile epileptic spasms syndrome (IESS) was more common in the middle mutation domain of TSC2 than in the hamartin domain. Additionally, retinal hamartoma, cardiac rhabdomyoma, and renal abnormalities were significantly associated with TSC2 compared with other gene types. This study contributes to our understanding of TSC by expanding the genotypic spectrum with novel variants and providing insights into the clinical spectrum of patients with TSC in Korea.
Collapse
Affiliation(s)
- Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sangbo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ji Young Oh
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
3
|
Pais ML, Martins J, Castelo‐Branco M, Gonçalves J. Increased susceptibility to kainate-induced seizures in a mouse model of tuberous sclerosis complex: Importance of sex and circadian cycle. Epilepsia Open 2024; 9:1710-1722. [PMID: 39010669 PMCID: PMC11450656 DOI: 10.1002/epi4.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Comorbidity of epilepsy and autism in tuberous sclerosis complex 2 (TSC2) is very frequent, but the link between these conditions is still poorly understood. To study neurological problems related to autism, the scientific community has been using an animal model of TSC2, Tsc2+/- mice. However, it is still unknown whether this model has the propensity to exhibit increased seizure susceptibility. Further, the importance of sex and/or the circadian cycle in this biological process has never been addressed. This research aimed to determine whether male and female Tsc2+/- mice have altered seizure susceptibility at light and dark phases. METHODS We assessed seizure susceptibility and progression in a Tsc2+/- mouse model using the chemical convulsant kainic acid (KA), a potent agonist of the AMPA/kainate class of glutamate receptors. Both male and female animals at adult age were evaluated during non-active and active periods. Seizure severity was determined by integrating individual scores per mouse according to a modified Racine scale. Locomotor behavior was monitored during control and after KA administration. RESULTS We found increased seizure susceptibility in Tsc2+/- mice with a significant influence of sex and circadian cycle on seizure onset, progression, and behavioral outcomes. While, compared to controls, Tsc2+/- males overall exhibited higher susceptibility independently of circadian cycle, Tsc2+/- females were more susceptible during the dark and post-ovulatory phase. Interestingly, sexual dimorphisms related to KA susceptibility were always reported during light phase independently of the genetic background, with females being the most vulnerable. SIGNIFICANCE The enhanced susceptibility in the Tsc2 mouse model suggests that other neurological alterations, beside brain lesions, may be involved in seizure occurrence for TSC. Importantly, our work highlighted the importance of considering biological sex and circadian cycle for further studies of TSC-related epilepsy research. PLAIN LANGUAGE SUMMARY Tuberous sclerosis complex (TSC) is a rare genetic disorder. It causes brain lesions and is linked to epilepsy, intellectual disability, and autism. We wanted to investigate epilepsy in this model. We found that these mice have more induced seizures than control animals. Our results show that these mice can be used in future epilepsy research for this disorder. We also found that sex and time of day can influence the results. This must be considered in this type of research.
Collapse
Affiliation(s)
- Mariana L. Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - Miguel Castelo‐Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
4
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
5
|
Pacchiano F, Tortora M, Doneda C, Izzo G, Arrigoni F, Ugga L, Cuocolo R, Parazzini C, Righini A, Brunetti A. Radiomics and artificial intelligence applications in pediatric brain tumors. World J Pediatr 2024; 20:747-763. [PMID: 38935233 PMCID: PMC11402857 DOI: 10.1007/s12519-024-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The study of central nervous system (CNS) tumors is particularly relevant in the pediatric population because of their relatively high frequency in this demographic and the significant impact on disease- and treatment-related morbidity and mortality. While both morphological and non-morphological magnetic resonance imaging techniques can give important information concerning tumor characterization, grading, and patient prognosis, increasing evidence in recent years has highlighted the need for personalized treatment and the development of quantitative imaging parameters that can predict the nature of the lesion and its possible evolution. For this purpose, radiomics and the use of artificial intelligence software, aimed at obtaining valuable data from images beyond mere visual observation, are gaining increasing importance. This brief review illustrates the current state of the art of this new imaging approach and its contributions to understanding CNS tumors in children. DATA SOURCES We searched the PubMed, Scopus, and Web of Science databases using the following key search terms: ("radiomics" AND/OR "artificial intelligence") AND ("pediatric AND brain tumors"). Basic and clinical research literature related to the above key research terms, i.e., studies assessing the key factors, challenges, or problems of using radiomics and artificial intelligence in pediatric brain tumors management, was collected. RESULTS A total of 63 articles were included. The included ones were published between 2008 and 2024. Central nervous tumors are crucial in pediatrics due to their high frequency and impact on disease and treatment. MRI serves as the cornerstone of neuroimaging, providing cellular, vascular, and functional information in addition to morphological features for brain malignancies. Radiomics can provide a quantitative approach to medical imaging analysis, aimed at increasing the information obtainable from the pixels/voxel grey-level values and their interrelationships. The "radiomic workflow" involves a series of iterative steps for reproducible and consistent extraction of imaging data. These steps include image acquisition for tumor segmentation, feature extraction, and feature selection. Finally, the selected features, via training predictive model (CNN), are used to test the final model. CONCLUSIONS In the field of personalized medicine, the application of radiomics and artificial intelligence (AI) algorithms brings up new and significant possibilities. Neuroimaging yields enormous amounts of data that are significantly more than what can be gained from visual studies that radiologists can undertake on their own. Thus, new partnerships with other specialized experts, such as big data analysts and AI specialists, are desperately needed. We believe that radiomics and AI algorithms have the potential to move beyond their restricted use in research to clinical applications in the diagnosis, treatment, and follow-up of pediatric patients with brain tumors, despite the limitations set out.
Collapse
Affiliation(s)
- Francesco Pacchiano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Mario Tortora
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Department of Head and Neck, Neuroradiology Unit, AORN Moscati, Avellino, Italy.
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Giana Izzo
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Filippo Arrigoni
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Cecilia Parazzini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Andrea Righini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
6
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Fu J, Liang P, Zheng Y, Xu C, Xiong F, Yang F. A large deletion in TSC2 causes tuberous sclerosis complex by dysregulating PI3K/AKT/mTOR signaling pathway. Gene 2024; 909:148312. [PMID: 38412945 DOI: 10.1016/j.gene.2024.148312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND/AIM Tuberous sclerosis complex (TSC) is a multi-system syndrome caused by loss-of-function mutation in TSC1 or TSC2. Most TSC patients present with cardiac rhabdomyoma or cortical tubers during fetal life, and the symptoms are not uniform as their age. The gene products of TSC1/2 are components of the TSC protein complex and are important role in the PI3K/AKT/mTOR (PAM) signaling pathway. Based on three members of a family with variable expressivity, the purpose of this study was to clarify the clinical features of TSC in different age groups and to analyze the genetic characteristics of TSC2 gene. METHODS Clinical exome sequencing and co-segregation were used to identify a three-generation family with four affected individuals. HEK-293T cell model was constructed for subsequent experiments. Quantitative RT-PCR, western blotting, and subcellular localization were used to analyze the expression effect of TSC2 mutation. CCK-8 assay, wound healing assay, and cell cycle analysis were used to analyze the function effect of TSC2 mutation. RESULT We identified a TSC family with heterozygous deletion of exon 4 in TSC2 by clinical exon sequencing. Sanger sequencing indicated that the affected individuals have 2541-bp deletion that encompassed exon 4 and adjacent introns. Deletion of exon 4 decreased the TSC2 mRNA and protein levels in HEK-293T cells, and activated the PI3K/AKT/mTOR pathway, thereby altering the cell cycle and promoting cell proliferation and migration. CONCLUSION We confirmed the pathogenicity of the large deletion in TSC2 in a three- generations family.. Deletion of exon 4 of TSC2 affected cell proliferation, migration, and cell cycle via abnormal activation of the PAM pathway. This study evaluated the pathogenic effect of deletion of exon 4 of TSC2 and investigated the underlying mechanism.
Collapse
Affiliation(s)
- Jiahui Fu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peili Liang
- Outpatient & Emergency Management Office, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Yingchun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Xu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fang Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Chi OZ, Liu X, Fortus H, Werlen G, Jacinto E, Weiss HR. Inhibition of p70 Ribosomal S6 Kinase (S6K1) Reduces Cortical Blood Flow in a Rat Model of Autism-Tuberous Sclerosis. Neuromolecular Med 2024; 26:10. [PMID: 38570425 PMCID: PMC10990997 DOI: 10.1007/s12017-024-08780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (14C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
9
|
Shimoda K, Iwasaki H, Mizuno Y, Seki M, Mimaki M, Kato M, Shinozaki-Ushiku A, Mori H, Ogawa S, Mizuguchi M. Case Report: Tuberous sclerosis complex-associated hemihypertrophy successfully treated with mTOR inhibitor sirolimus. Front Pediatr 2024; 12:1333064. [PMID: 38455392 PMCID: PMC10919150 DOI: 10.3389/fped.2024.1333064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by a mutation in either of the two tumor suppressor genes, TSC1 and TSC2. Due to dysregulated activity of the mammalian target of rapamycin (mTOR) pathway, hamartomas or benign tumors frequently occur in many organs and are often treated with mTOR inhibitors. Hemihypertrophy is a rare complication of TSC. Although not being a tumor, progressive overgrowth of the affected limb may cause cosmetic and functional problems, for which the efficacy of mTOR inhibitors has not been reported previously. We herein report a case of TSC-associated hemihypertrophy. In this case, genetic studies revealed TSC1 loss of heterozygosity as the cause of hemihypertrophy. Clinically, pharmacological treatment with an mTOR inhibitor sirolimus successfully ameliorated cosmetic and functional problems with no intolerable adverse effects.
Collapse
Affiliation(s)
- Konomi Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Tokyo, Japan
| | - Hiroyuki Iwasaki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Mizuno
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harushi Mori
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Masashi Mizuguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Tokyo, Japan
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Li Y, Si Z, Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Tuberous sclerosis complex: a case report and literature review. Ital J Pediatr 2023; 49:116. [PMID: 37679848 PMCID: PMC10485941 DOI: 10.1186/s13052-023-01490-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/29/2023] [Indexed: 09/09/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with different initial symptoms and complex clinical manifestations. A 14-year-old female patient presented with persistent fever and severe headache. Medical imaging examinations revealed multiple abnormal intracranial lesions. The patient had previously been misdiagnosed with "encephalitis and acute disseminated encephalomyelitis" after visiting numerous hospitals. Eventually, by combing the characteristics of the case and genetic testing results, the patient was diagnosed with TSC accompanied by Mycoplasma pneumoniae infection. The purpose of this case report and literature review is to improve understanding of the clinical diagnosis and treatment of TSC so as to avoid misdiagnosis, missed diagnosis, and overtreatment.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Zhihua Si
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Wei Zhao
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Cong Xie
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Xu Zhang
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, China
| | - Jinzhi Liu
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China.
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, 67 Dongchang West Road, Liaocheng, Liaocheng, 252000, China.
- Department of Gerontology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
- Department of Geriatric Neurology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China.
- Department of Neurology, Cheeloo College of Medicine, Liaocheng People's Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, 67 Dongchang West Road, Liaocheng, Liaocheng, 252000, China.
- Department of Neurology, Cheeloo College of Medicine, Liaocheng People's Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
| |
Collapse
|
11
|
Previtali R, Prontera G, Alfei E, Nespoli L, Masnada S, Veggiotti P, Mannarino S. Paradigm shift in the treatment of tuberous sclerosis: Effectiveness of everolimus. Pharmacol Res 2023; 195:106884. [PMID: 37549757 DOI: 10.1016/j.phrs.2023.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterised by abnormal cell proliferation and differentiation that affects multiple organs and can lead to the growth of hamartomas. Tuberous sclerosis complex is caused by the disinhibition of the protein mTOR (mammalian target of rapamycin). In the past, various therapeutic approaches, even if only symptomatic, have been attempted to improve the clinical effects of this disease. While all of these therapeutic strategies are useful and are still used and indicated, they are symptomatic therapies based on the individual symptoms of the disease and therefore not fully effective in modifying long-term outcomes. A new therapeutic approach is the introduction of allosteric inhibitors of mTORC1, which allow restoration of metabolic homeostasis in mutant cells, potentially eliminating most of the clinical manifestations associated with Tuberous sclerosis complex. Everolimus, a mammalian target of the rapamycin inhibitor, is able to reduce hamartomas, correcting the specific molecular defect that causes Tuberous sclerosis complex. In this review, we report the findings from the literature on the use of everolimus as an effective and safe drug in the treatment of TSC manifestations affecting various organs, from the central nervous system to the heart.
Collapse
Affiliation(s)
- Roberto Previtali
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giorgia Prontera
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enrico Alfei
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Luisa Nespoli
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | - Silvia Masnada
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Savina Mannarino
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
12
|
New Insights into the Regulation of mTOR Signaling via Ca 2+-Binding Proteins. Int J Mol Sci 2023; 24:ijms24043923. [PMID: 36835331 PMCID: PMC9959742 DOI: 10.3390/ijms24043923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Environmental factors are important regulators of cell growth and proliferation. Mechanistic target of rapamycin (mTOR) is a central kinase that maintains cellular homeostasis in response to a variety of extracellular and intracellular inputs. Dysregulation of mTOR signaling is associated with many diseases, including diabetes and cancer. Calcium ion (Ca2+) is important as a second messenger in various biological processes, and its intracellular concentration is tightly regulated. Although the involvement of Ca2+ mobilization in mTOR signaling has been reported, the detailed molecular mechanisms by which mTOR signaling is regulated are not fully understood. The link between Ca2+ homeostasis and mTOR activation in pathological hypertrophy has heightened the importance in understanding Ca2+-regulated mTOR signaling as a key mechanism of mTOR regulation. In this review, we introduce recent findings on the molecular mechanisms of regulation of mTOR signaling by Ca2+-binding proteins, particularly calmodulin (CaM).
Collapse
|
13
|
Kashii H, Kasai S, Sato A, Hagino Y, Nishito Y, Kobayashi T, Hino O, Mizuguchi M, Ikeda K. Tsc2 mutation rather than Tsc1 mutation dominantly causes a social deficit in a mouse model of tuberous sclerosis complex. Hum Genomics 2023; 17:4. [PMID: 36732866 PMCID: PMC9893559 DOI: 10.1186/s40246-023-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.
Collapse
Affiliation(s)
- Hirofumi Kashii
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.417106.5Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042 Japan
| | - Shinya Kasai
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Atsushi Sato
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.412708.80000 0004 1764 7572Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan
| | - Yoko Hagino
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Yasumasa Nishito
- grid.272456.00000 0000 9343 3630Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Toshiyuki Kobayashi
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Okio Hino
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Masashi Mizuguchi
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, 1-1-10 Komone, Itabashi-Ku, Tokyo, 173-0037 Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
14
|
Fan K, Guo Y, Song Z, Yuan L, Zheng W, Hu X, Gong L, Deng H. The TSC2 c.2742+5G>A variant causes variable splicing changes and clinical manifestations in a family with tuberous sclerosis complex. Front Mol Neurosci 2023; 16:1091323. [PMID: 37152430 PMCID: PMC10157042 DOI: 10.3389/fnmol.2023.1091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a genetic, variably expressed, multisystem disease characterized by benign tumors. It is caused by pathogenic variants of the TSC complex subunit 1 gene (TSC1) and the TSC complex subunit 2 gene (TSC2). Genetic testing allows for early diagnosis, genetic counseling, and improved outcomes, but it did not identify a pathogenic variant in up to 25% of all TSC patients. This study aimed to identify the disease-causing variant in a Han-Chinese family with TSC. Methods A six-member, three-generation Han-Chinese family with TSC and three unrelated healthy women were recruited. A comprehensive medical examination, a 3-year follow-up, whole exome sequencing, Sanger sequencing, and segregation analysis were performed in the family. The splicing analysis results obtained from six in silico tools, minigene assay, and patients' lymphocyte messenger RNA were compared, and quantitative reverse transcription PCR was used to confirm the pathogenicity of the variant. Results Two affected family members had variable clinical manifestations including a rare bilateral cerebellar ataxia symptom. The 3-year follow-up results suggest the effects of a combined treatment of anti-epilepsy drugs and sirolimus for TSC-related epilepsy and cognitive deficits. Whole exome sequencing, Sanger sequencing, segregation analysis, splicing analysis, and quantitative reverse transcription PCR identified the TSC2 gene c.2742+5G>A variant as the genetic cause. This variant inactivated the donor splice site, a cryptic non-canonical splice site was used for different splicing changes in two affected subjects, and the resulting mutant messenger RNA may be degraded by nonsense-mediated decay. The defects of in silico tools and minigene assay in predicting cryptic splice sites were suggested. Conclusions This study identified a TSC2 c.2742+5G>A variant as the genetic cause of a Han-Chinese family with TSC and first confirmed its pathogenicity. These findings expand the phenotypic and genetic spectrum of TSC and may contribute to its diagnosis and treatment, as well as a better understanding of the splicing mechanism.
Collapse
Affiliation(s)
- Kuan Fan
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lina Gong
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hao Deng
| |
Collapse
|
15
|
A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12030464. [PMID: 35330464 PMCID: PMC8949394 DOI: 10.3390/jpm12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder without a known cure. Current standard-of-care treatments focus on addressing core symptoms directly but have provided limited benefits. In many cases, individuals with ASD have abnormalities in multiple organs, including the brain, immune and gastrointestinal system, and multiple physiological systems including redox and metabolic systems. Additionally, multiple aspects of the environment can adversely affect children with ASD including the sensory environment, psychosocial stress, dietary limitations and exposures to allergens and toxicants. Although it is not clear whether these medical abnormalities and environmental factors are related to the etiology of ASD, there is evidence that many of these factors can modulate ASD symptoms, making them a potential treatment target for improving core and associated ASD-related symptoms and improving functional limitation. Additionally, addressing underlying biological disturbances that drive pathophysiology has the potential to be disease modifying. This article describes a systematic approach using clinical history and biomarkers to personalize medical treatment for children with ASD. This approach is medically comprehensive, making it attractive for a multidisciplinary approach. By concentrating on treatable conditions in ASD, it is possible to improve functional ability and quality of life, thus providing optimal outcomes.
Collapse
|
16
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
17
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4619-4639. [DOI: 10.1093/cercor/bhab506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
|
18
|
Thomas A, Sumughan S, Dellacecca ER, Shivde RS, Lancki N, Mukhatayev Z, Vaca CC, Han F, Barse L, Henning SW, Zamora-Pineda J, Akhtar S, Gupta N, Zahid JO, Zack SR, Ramesh P, Jaishankar D, Lo AS, Moss J, Picken MM, Darling TN, Scholtens DM, Dilling DF, Junghans RP, Le Poole IC. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021; 6:152014. [PMID: 34806651 PMCID: PMC8663788 DOI: 10.1172/jci.insight.152014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/– mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2–/– tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/– heterozygous (>60 weeks) mice that carry spontaneous Tsc2–/– tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.
Collapse
Affiliation(s)
- Ancy Thomas
- Department of Dermatology, Feinberg School of Medicine.,Robert H. Lurie Comprehensive Cancer Center
| | | | | | | | - Nicola Lancki
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
| | | | | | - Fei Han
- Department of Dermatology, Feinberg School of Medicine.,Robert H. Lurie Comprehensive Cancer Center
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jesus Zamora-Pineda
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Suhail Akhtar
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Nikhilesh Gupta
- Robert H. Lurie Comprehensive Cancer Center.,Illinois Mathematics and Science Academy, Aurora, Illinois, USA
| | - Jasmine O Zahid
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Stephanie R Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | | | | | - Agnes Sy Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Maria M Picken
- Department of Pathology, Loyola University, Maywood, Illinois, USA
| | - Thomas N Darling
- Department of Dermatology, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Denise M Scholtens
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and.,Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel F Dilling
- Department of Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Richard P Junghans
- Department of Hematology/Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine.,Robert H. Lurie Comprehensive Cancer Center.,Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|