Soto-Sánchez J. Bioactivity of Natural Polyphenols as Antiparasitic Agents and their Biochemical Targets.
Mini Rev Med Chem 2022;
22:2661-2677. [PMID:
35379147 DOI:
10.2174/1389557522666220404090429]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND
Leishmaniasis and trypanosomiasis are diseases that affect public health worldwide due to their high incidence, morbidity, and mortality. Available treatments are costly, prolonged, and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is justified and polyphenols show promising activity.
OBJECTIVE
The main aim of this mini-review was to analyze the most promising phenolic compounds with reported antileishmanial and antitrypanosomal activity as well as their mechanisms of action.
RESULTS
We found that the mode of action of these natural compounds mainly lignans, neolignans, and flavonoids depends on the organism they act on and includes, macrophage activation, induction of morphological changes such as chromatin condensation, DNA fragmentation, accumulation of acidocalcisomes, and glycosomes, Golgi damage and mitochondrial dysfunction as well as negative regulation of mitochondrial enzymes and other essential enzymes for parasite survival such as arginase. This gives a wide scope for future research towards the rational development of anti-kinetoplastid drugs.
CONCLUSION
Although the specific molecular targets, bioavailability, route of administration, and dosages of some of these natural compounds need to be determined, polyphenols and their combinations represent a very promising and safe strategy to be considered for use against Leishmania spp and Trypanosoma spp. In addition, these compounds may provide a scaffold for developing new, more potent, and more selective antiprotozoal agents.
Collapse