1
|
Chemelewski R, McKinley BA, Finlayson S, Mullet JE. Epicuticular wax accumulation and regulation of wax pathway gene expression during bioenergy Sorghum stem development. FRONTIERS IN PLANT SCIENCE 2023; 14:1227859. [PMID: 37936930 PMCID: PMC10626490 DOI: 10.3389/fpls.2023.1227859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023]
Abstract
Bioenergy sorghum is a drought-tolerant high-biomass C4 grass targeted for production on annual cropland marginal for food crops due primarily to abiotic constraints. To better understand the overall contribution of stem wax to bioenergy sorghum's resilience, the current study characterized sorghum stem cuticular wax loads, composition, morphometrics, wax pathway gene expression and regulation using vegetative phase Wray, R07020, and TX08001 genotypes. Wax loads on sorghum stems (~103-215 µg/cm2) were much higher than Arabidopsis stem and leaf wax loads. Wax on developing sorghum stem internodes was enriched in C28/30 primary alcohols (~65%) while stem wax on fully developed stems was enriched in C28/30 aldehydes (~80%). Scanning Electron Microscopy showed minimal wax on internodes prior to the onset of elongation and that wax tubules first appear associated with cork-silica cell complexes when internode cell elongation is complete. Sorghum homologs of genes involved in wax biosynthesis/transport were differentially expressed in the stem epidermis. Expression of many wax pathway genes (i.e., SbKCS6, SbCER3-1, SbWSD1, SbABCG12, SbABCG11) is low in immature apical internodes then increases at the onset of stem wax accumulation. SbCER4 is expressed relatively early in stem development consistent with accumulation of C28/30 primary alcohols on developing apical internodes. High expression of two SbCER3 homologs in fully elongated internodes is consistent with a role in production of C28/30 aldehydes. Gene regulatory network analysis aided the identification of sorghum homologs of transcription factors that regulate wax biosynthesis (i.e., SbSHN1, SbWRI1/3, SbMYB94/96/30/60, MYS1) and other transcription factors that could regulate and specify expression of the wax pathway in epidermal cells during cuticle development.
Collapse
Affiliation(s)
- Robert Chemelewski
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Brian A. McKinley
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - John E. Mullet
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Yu CY, Nakamura Y. SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) and its homolog SVBL act downstream of transcription factor NAC089 and function redundantly in Arabidopsis unfolded protein response. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5870-5880. [PMID: 37578504 DOI: 10.1093/jxb/erad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
The unfolded protein response (UPR) is a cellular mechanism that alleviates endoplasmic reticulum stress to maintain protein homeostasis. Although SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) is characterized as an emerging UPR factor downstream of the IRE-bZIP60 pathway, whether its homologs participate in the plant UPR remains unknown. Here, we showed that an SVB homolog, SVB-like (SVBL), functions redundantly with SVB in endoplasmic reticulum stress tolerance. The svb-1 svbl-1 double mutant showed a hypersensitivity phenotype and had higher UPR gene expression under endoplasmic reticulum stress than single mutants and the wild type. SVB responded to endoplasmic reticulum stress by accumulating in the root epidermis and phloem cells, but SVBL did not. Ectopic expression of the UPR factor NAC089 up-regulated both SVB and SVBL genes, suggesting that SVB and SVBL work downstream of NAC089. Thus, SVB and SVBL play distinct roles that are modulated by the common upstream regulator NAC089 to cope with endoplasmic reticulum stress in Arabidopsis.
Collapse
Affiliation(s)
- Chao-Yuan Yu
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-8654, Japan
| |
Collapse
|
3
|
Li Y, Wang W, Zhang N, Cheng Y, Hussain S, Wang Y, Tian H, Hussain H, Lin R, Yuan Y, Wang C, Wang T, Wang S. Antagonistic Regulation of ABA Responses by Duplicated Tandemly Repeated DUF538 Protein Genes in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2989. [PMID: 37631202 PMCID: PMC10459309 DOI: 10.3390/plants12162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The plant hormone ABA (abscisic acid) regulates plant responses to abiotic stresses by regulating the expression of ABA response genes. However, the functions of a large portion of ABA response genes have remained unclear. We report in this study the identification of ASDs (ABA-inducible signal peptide-containing DUF538 proteins), a subgroup of DUF538 proteins with a signal peptide, as the regulators of plant responses to ABA in Arabidopsis. ASDs are encoded by four closely related DUF538 genes, with ASD1/ASD2 and ASD3/ASD4 being two pairs of duplicated tandemly repeated genes. The quantitative RT-PCR (qRT-PCR) results showed that the expression levels of ASDs increased significantly in response to ABA as well as NaCl and mannitol treatments, with the exception that the expression level of ASD2 remained largely unchanged in response to NaCl treatment. The results of Arabidopsis protoplast transient transfection assays showed that ASDs were localized on the plasma membrane and in the cytosol and nucleus. When recruited to the promoter of the reporter gene via a fused GD domain, ASDs were able to slightly repress the expression of the co-transfected reporter gene. Seed germination and cotyledon greening assays showed that ABA sensitivity was increased in the transgenic plants that were over-expressing ASD1 or ASD3 but decreased in the transgenic plants that were over-expressing ASD2 or ASD4. On the other hand, ABA sensitivity was increased in the CRISPR/Cas9 gene-edited asd2 single mutants but decreased in the asd3 single mutants. A transcriptome analysis showed that differentially expressed genes in the 35S:ASD2 transgenic plant seedlings were enriched in several different processes, including in plant growth and development, the secondary metabolism, and plant hormone signaling. In summary, our results show that ASDs are ABA response genes and that ASDs are involved in the regulation of plant responses to ABA in Arabidopsis; however, ASD1/ASD3 and ASD2/ASD4 have opposite functions.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| |
Collapse
|
4
|
Sands LB, Haiden SR, Ma Y, Berkowitz GA. Hormonal control of promoter activities of Cannabis sativa prenyltransferase 1 and 4 and salicylic acid mediated regulation of cannabinoid biosynthesis. Sci Rep 2023; 13:8620. [PMID: 37244890 DOI: 10.1038/s41598-023-35303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
Cannabis sativa aromatic prenyltransferase 4 (CsPT4) and 1 (CsPT1) have been shown to catalyze cannabigerolic acid (CBGA) biosynthesis, a step that rate-limits the cannabinoid biosynthetic pathway; both genes are highly expressed in flowers. CsPT4 and CsPT1 promoter driven β-glucuronidase (GUS) activities were detected in leaves of cannabis seedlings, and strong CsPT4 promoter activities were associated with glandular trichomes. Hormonal regulation of cannabinoid biosynthetic genes is poorly understood. An in silico analysis of the promoters identified putative hormone responsive elements. Our work examines hormone-responsive elements in the promoters of CsPT4 and CsPT1 in the context of physiological responses of the pathway to the hormone in planta. Dual luciferase assays confirmed the regulation of promoter activities by the hormones. Further studies with salicylic acid (SA) demonstrated that SA pretreatment increased the expression of genes located downstream of the cannabinoid biosynthetic pathway. The results from all aspects of this study demonstrated an interaction between certain hormones and cannabinoid synthesis. The work provides information relevant to plant biology, as we present evidence demonstrating correlations between molecular mechanisms that regulate gene expression and influence plant chemotypes.
Collapse
Affiliation(s)
- Lauren B Sands
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA
- SafeTiva Labs, Westfield, MA, 01085, USA
| | - Samuel R Haiden
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA
| | - Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA.
| | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA.
| |
Collapse
|
5
|
Wang Y, Li Y, Tian H, Wang W, Wang X, Hussain S, Yuan Y, Lin R, Hussain H, Wang T, Wang S. AtS40-1, a group I DUF584 protein positively regulates ABA response and salt tolerance in Arabidopsis. Gene 2022; 846:146846. [PMID: 36044943 DOI: 10.1016/j.gene.2022.146846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Abiotic stresses such as salt and drought affect plants growth and development, whereas the plant hormone ABA is able to regulate plant responses to abiotic stresses by regulating downstream gene expression. Therefore characterization of unknown function ABA responsive genes is able to identify novel regulators of plant abiotic stress responses. We report here the characterization of AtS40-1, a Group I DUF584 protein in the regulation of ABA and salt responses in Arabidopsis. RT-PCR results show that the expression of AtS40-1 was dramatically induced by ABA, but only slightly increase, if any, was observed for other three Group I DUF584 genes including AtS40-1L, AtS40-2 and AtS40-3. Transfection assays in Arabidopsis protoplasts show that all the four Group I DUF584 proteins were predominately localized in nucleus and were able to repress the expression of the co-transfected reporter gene. The roles of AtS40-1 in regulating plant response to ABA and abiotic stress responses were analyzed, by using transgenic plants and inactivation mutants. The results show that the ABA responses were increased in the 35S:AtS40-1 transgenic plants, but decreased in the ats40-1 mutants. Similar to AtS40-1, the results indicate that AtS40-1L, the most closely related DUF584 protein to AtS40-1, positively regulates ABA responses in Arabidopsis. However, further decreased ABA responses were not observed in the ats40-1 ats40-1l double mutants. On the other hand, salt tolerance was increased in the transgenic plants overexpressing AtS40-1 or AtS40-1L, but decreased in the ats40-1 and ats40-1l mutants. Quantitative RT-PCR results show that the ABA induced expression of the ABA signaling regulator genes ABI3, ABI4 and ABA responsive gene RAB18 was decreased, where as ABA signaling gene ABI1 was increased in the ats40-1 mutants. These results suggest that AtS40-1 regulates ABA and salt responses in Arabidopsis, possibly by affecting ABA induced expression of some ABA signaling regulator genes.
Collapse
Affiliation(s)
- Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China; Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
6
|
Woods P, Price N, Matthews P, McKay JK. Genome-wide polymorphism and genic selection in feral and domesticated lineages of Cannabis sativa. G3 (BETHESDA, MD.) 2022; 13:jkac209. [PMID: 36018239 PMCID: PMC9911069 DOI: 10.1093/g3journal/jkac209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022]
Abstract
A comprehensive understanding of the degree to which genomic variation is maintained by selection versus drift and gene flow is lacking in many important species such as Cannabis sativa (C. sativa), one of the oldest known crops to be cultivated by humans worldwide. We generated whole genome resequencing data across diverse samples of feralized (escaped domesticated lineages) and domesticated lineages of C. sativa. We performed analyses to examine population structure, and genome wide scans for FST, balancing selection, and positive selection. Our analyses identified evidence for sub-population structure and further support the Asian origin hypothesis of this species. Feral plants sourced from the U.S. exhibited broad regions on chromosomes 4 and 10 with high F̄ST which may indicate chromosomal inversions maintained at high frequency in this sub-population. Both our balancing and positive selection analyses identified loci that may reflect differential selection for traits favored by natural selection and artificial selection in feral versus domesticated sub-populations. In the U.S. feral sub-population, we found six loci related to stress response under balancing selection and one gene involved in disease resistance under positive selection, suggesting local adaptation to new climates and biotic interactions. In the marijuana sub-population, we identified the gene SMALLER TRICHOMES WITH VARIABLE BRANCHES 2 to be under positive selection which suggests artificial selection for increased tetrahydrocannabinol yield. Overall, the data generated, and results obtained from our study help to form a better understanding of the evolutionary history in C. sativa.
Collapse
Affiliation(s)
- Patrick Woods
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicholas Price
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Paul Matthews
- Present address for Paul Matthews: Hopsteiner, Yakima, WA 98903, USA
| | - John K McKay
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Wang J, Lv P, Yan D, Zhang Z, Xu X, Wang T, Wang Y, Peng Z, Yu C, Gao Y, Duan L, Li R. Exogenous Melatonin Improves Seed Germination of Wheat ( Triticum aestivum L.) under Salt Stress. Int J Mol Sci 2022; 23:8436. [PMID: 35955571 PMCID: PMC9368970 DOI: 10.3390/ijms23158436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin (MT) can effectively reduce oxidative damage induced by abiotic stresses such as salt in plants. However, the effects of MT on physiological responses and molecular regulation during wheat germination remains largely elusive. In this study, the response of wheat seeds to MT under salt stress during germination was investigated at physiological and transcriptome levels. Our results revealed that application of MT significantly reduced the negative influence of salt stress on wheat seed germination. The oxidative load was reduced by inducing high activities of antioxidant enzymes. In parallel, the content of gibberellin A3 (GA3) and jasmonic acid (JA) increased in MT-treated seedling. RNA-seq analysis demonstrated that MT alters oxidoreductase activity and phytohormone-dependent signal transduction pathways under salt stress. Weighted correlation network analysis (WGCNA) revealed that MT participates in enhanced energy metabolism and protected seeds via maintained cell morphology under salt stress during wheat seed germination. Our findings provide a conceptual basis of the MT-mediated regulatory mechanism in plant adaptation to salt stress, and identify the potential candidate genes for salt-tolerant wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liusheng Duan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| | - Runzhi Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Experimental Teaching Demonstration Center for Plant Production, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (P.L.); (D.Y.); (Z.Z.); (X.X.); (T.W.); (Y.W.); (Z.P.); (C.Y.); (Y.G.)
| |
Collapse
|
8
|
The R2R3 MYB Transcription Factor MYB71 Regulates Abscisic Acid Response in Arabidopsis. PLANTS 2022; 11:plants11101369. [PMID: 35631794 PMCID: PMC9143609 DOI: 10.3390/plants11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to abiotic stresses via regulating the expression of downstream genes, yet the functions of many ABA responsive genes remain unknown. We report here the characterization of MYB71, a R2R3 MYB transcription factor in regulating ABA responses in Arabidopsis. RT-PCR results show that the expression level of MYB71 was increased in response to ABA treatment. Arabidopsis protoplasts transfection results show that MYB71 was specifically localized in nucleus and it activated the Gal4:GUS reporter gene when recruited to the Gal4 promoter by a fused DNA binding domain GD. Roles of MYB71 in regulating plant response to ABA were analyzed by generating Arabidopsis transgenic plants overexpression MYB71 and gene edited mutants of MYB71. The results show that ABA sensitivity was increased in the transgenic plants overexpression MYB71, but decreased in the MYB71 mutants. By using a DEX inducible system, we further identified genes are likely regulated by MYB71, and found that they are enriched in biological process to environmental stimuli including abiotic stresses, suggesting that MYB71 may regulate plant response to abiotic stresses. Taken together, our results suggest that MYB71 is an ABA responsive gene, and MYB71 functions as a transcription activator and it positively regulates ABA response in Arabidopsis.
Collapse
|
9
|
Kanehara K, Cho Y, Yu CY. A lipid viewpoint on the plant endoplasmic reticulum stress response. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2835-2847. [PMID: 35560195 DOI: 10.1093/jxb/erac063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Organisms, including humans, seem to be constantly exposed to various changes, which often have undesirable effects, referred to as stress. To keep up with these changes, eukaryotic cells may have evolved a number of relevant cellular processes, such as the endoplasmic reticulum (ER) stress response. Owing to presumably intimate links between human diseases and the ER function, the ER stress response has been extensively investigated in various organisms for a few decades. Based on these studies, we now have a picture of the molecular mechanisms of the ER stress response, one of which, the unfolded protein response (UPR), is highly conserved among yeasts, mammals, higher plants, and green algae. In this review, we attempt to highlight the plant UPR from the perspective of lipids, especially membrane phospholipids. Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) are the most abundant membrane phospholipids in eukaryotic cells. The ratio of PtdCho to PtdEtn and the unsaturation of fatty acyl tails in both phospholipids may be critical factors for the UPR, but the pathways responsible for PtdCho and PtdEtn biosynthesis are distinct in animals and plants. We discuss the plant UPR in comparison with the system in yeasts and animals in the context of membrane phospholipids.
Collapse
Affiliation(s)
- Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
10
|
Yu CY, Cho Y, Sharma O, Kanehara K. What's unique? The unfolded protein response in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1268-1276. [PMID: 34849719 DOI: 10.1093/jxb/erab513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The investigation of a phenomenon called the unfolded protein response (UPR) started approximately three decades ago, and we now know that the UPR is involved in a number of cellular events among metazoans, higher plants, and algae. The relevance of the UPR in human diseases featuring protein folding defects, such as Alzheimer's and Huntington's diseases, has drawn much attention to the response in medical research to date. While metazoans and plants share similar molecular mechanisms of the UPR, recent studies shed light on the uniqueness of the plant UPR, with plant-specific protein families appearing to play pivotal roles. Given the considerable emphasis on the original discoveries of key factors in metazoans, this review highlights the uniqueness of the plant UPR based on current knowledge.
Collapse
Affiliation(s)
- Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Oshin Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Plant Cell and Organism Development 2.0. Int J Mol Sci 2022; 23:ijms23031885. [PMID: 35163807 PMCID: PMC8836925 DOI: 10.3390/ijms23031885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
|