1
|
Akram W, Khan I, Rehman A, Munir B, Guo J, Li G. A Physiological and Molecular Docking Insight on Quercetin Mediated Salinity Stress Tolerance in Chinese Flowering Cabbage and Increase in Glucosinolate Contents. PLANTS (BASEL, SWITZERLAND) 2024; 13:1698. [PMID: 38931131 PMCID: PMC11207431 DOI: 10.3390/plants13121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying mechanisms. The tolerable NaCl stress level was initially screened for the Chinese flowering cabbage plants during a preliminary pot trial by exposing the plants to salinity levels (0, 50, 100, 150, 200, 250, 300, 350, and 400 mM) and 250 mM was adopted for further experimentation based on the findings. The greenhouse experiment was performed by adopting a completely randomized design using three different doses of quercetin dihydrate (50, 100, 150 µM) applied as a foliar treatment. The findings showed that the exposure salinity significantly reduced shoot length (46.5%), root length (21.2%), and dry biomass (32.1%) of Chinese flowering cabbage plants. Whereas, quercetin dihydrate applied at concentrations of 100, and 150 µM significantly diminished the effect of salinity stress by increasing shoot length (36.8- and 71.3%), root length (36.57- and 56.19%), dry biomass production (51.4- and 78.6%), Chl a (69.8- and 95.7%), Chl b (35.2- and 87.2%), and carotenoid contents (21.4- and 40.3%), respectively, compared to the plants cultivated in salinized conditions. The data of physiological parameters showed a significant effect of quercetin dihydrate on the activities of peroxidase, superoxide dismutase, and catalase enzymes. Interestingly, quercetin dihydrate increased the production of medicinally important glucosinolate compounds in Chinese flowering cabbage plants. Molecular docking analysis showed a strong affinity of quercetin dihydrate with three different stress-related proteins of B. rapa plants. Based on the findings, it could be concluded that quercetin dihydrate can increase the growth of Chinese flowering cabbage under both salinity and normal conditions, along with an increase in the medicinal quality of the plants. Further investigations are recommended as future perspectives using other abiotic stresses to declare quercetin dihydrate as an effective remedy to rescue plant growth under prevailing stress conditions.
Collapse
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| |
Collapse
|
2
|
Mihai RA, Terán-Maza VA, Portilla-Benalcazar KA, Ramos-Guaytarilla LE, Vizuete-Cabezas MJ, Melo-Heras EJ, Cubi-Insuaste NS, Catana RD. Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area. Metabolites 2024; 14:307. [PMID: 38921442 PMCID: PMC11206157 DOI: 10.3390/metabo14060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The Musa spp. represents the most commonly produced, transitioned, and consumed fruit around the globe, with several important applications in the biotechnology, pharmaceutical, and food industries. Moko disease is produced by Ralstonia solanacearum-a factor with a high impact on all crops in Ecuador, representing one of the biggest phytosanitary problems. Four of the most common varieties of Musa spp. were tested to identify the metabolic reaction of plants facing Moko disease. The phenolic and flavonoid content has been evaluated as a defense system, and the α-diphenyl-α-picrylhydrazyl free-radical-scavenging method (DPPH), free-radical-scavenging activity (ABTS), ferric-reducing antioxidant power (FRAP) assays, and liquid chromatography and mass spectrometry (LC-MS) have been adapted to analyze the active compounds with the antioxidant capacity necessary to counteract the pathogenic attack. Our results indicate that all the studied varieties of Musa spp. react in the same way, such that the diseased samples showed a higher accumulation of secondary metabolites with antioxidant capacity compared with the healthy ones, with high active compound synthesis identified during the appearance of Moko disease symptoms. More than 40 compounds and their derivatives (from kaempferol and quercetin glycosides) with protective roles demonstrate the implication of the Musa spp. defense system against R. solanacearum infection.
Collapse
Affiliation(s)
- Raluca A. Mihai
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Vanessa A. Terán-Maza
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Karen A. Portilla-Benalcazar
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Lissette E. Ramos-Guaytarilla
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - María J. Vizuete-Cabezas
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Erly J. Melo-Heras
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Nelson S. Cubi-Insuaste
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Rodica D. Catana
- Developmental Biology Department, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, Romania;
| |
Collapse
|
3
|
Fedoreyeva LI, Lazareva EM, Kononenko NV. Features of the Effect of Quercetin on Different Genotypes of Wheat under Hypoxia. Int J Mol Sci 2024; 25:4487. [PMID: 38674072 PMCID: PMC11050432 DOI: 10.3390/ijms25084487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is one of the common abiotic stresses that negatively affects the development and productivity of agricultural crops. Quercetin is used to protect plants from oxidative stress when exposed to environmental stressors. O2 deficiency leads to impaired development and morphometric parameters in wheat varieties Orenburgskaya 22 (Triticum aestivum L.) and varieties Zolotaya (Triticum durum Desf.). Cytological analysis revealed various types of changes in the cytoplasm under conditions of hypoxia and treatment with quercetin. The most critical changes in the cytoplasm occur in the Zolotaya variety during pretreatment with quercetin followed by hypoxia, and in the Orenburgskaya 22 variety during hypoxia. Quercetin has a protective effect only on the Orenburgskaya 22 variety, and also promotes a more effective recovery after exposure to low O2 content. Hypoxia causes an increase in reactive oxygen species and activates the antioxidant system. It has been shown that the most active components of the antioxidant system in the Orenburgskaya 22 variety are MnSOD and Cu/ZnSOD, and in the Zolotaya variety GSH. We have shown that quercetin provides resistance only to the wheat genotype Orenburgskaya 22, as a protective agent against abiotic stress, which indicates the need for a comprehensive study of the effects of exogenous protectors before use in agriculture.
Collapse
Affiliation(s)
- Larisa Ivanovna Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| | - Elena Michailovna Lazareva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Neonila Vasilievna Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| |
Collapse
|
4
|
Elbasan F, Arikan B, Ozfidan-Konakci C, Tofan A, Yildiztugay E. Hesperidin and chlorogenic acid mitigate arsenic-induced oxidative stress via redox regulation, photosystems-related gene expression, and antioxidant efficiency in the chloroplasts of Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108445. [PMID: 38402801 DOI: 10.1016/j.plaphy.2024.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The ubiquitous metalloid arsenic (As), which is not essential, can be found extensively in the soil and subterranean water of numerous nations, raising substantial apprehensions due to its impact on both agricultural productivity and sustainability. Plants exposed to As often display morphological, physiological, and growth-related abnormalities, collectively leading to reduced productivity. Polyphenols, operating as secondary messengers within the intricate signaling networks of plants, assume integral functions in the acquisition of resistance to diverse environmental stressors, including but not limited to drought, salinity, and exposure to heavy metals. The pivotal roles played by polyphenols in these adaptive processes underscore their profound significance in plant biology. This study aims to elucidate the impact of hesperidin (HP) and chlorogenic acid (CA), recognized as potent bioactive compounds, on maize plants exposed to As. To achieve this objective, the study examined the physiological and biochemical impacts, including growth parameters, photosynthesis, and chloroplastic antioxidants, of HP (100 μM) and CA (50 μM) on Zea mays plants exposed to arsenate stress (AsV, 100 μM - Na2HAsO4⋅7H2O). As toxicity led to reductions in fresh weight (FW) and dry weight (DW) by 33% and 26%, respectively. However, the application of As+HP and As + CA increased FW by 22% and 40% and DW by 14% and 17%, respectively, alleviating the effects of As stress. As toxicity resulted in the up-regulation of PSII genes (psbA and psbD) and PSI genes (psaA and psaB), indicating a potential response to the re-formation of degraded regions, likely driven by the heightened demand for photosynthesis. Exogenous HP or/and CA treatments effectively counteracted the adverse effects of As toxicity on the photochemical quantum efficiency of PSII (Fv/Fm). H2O2 content showed a 23% increase under As stress, and this increase was evident in guard cells when examining confocal microscopy images. In the presence of As toxicity, the chloroplastic antioxidant capacity can exhibit varying trends, with either a decrease or increase observed. After the application of CA and/or HP, a significant increase was observed in the activity of GR, APX, GST, and GPX enzymes, resulting in decreased levels of H2O2 and MDA. Additionally, the enhanced functions of MDHAR and DHAR have modulated the redox status of ascorbic acid (AsA) and glutathione (GSH). The HP or CA-mediated elevated levels of AsA and GSH content further contributed to the preservation of redox homeostasis in chloroplasts facing stress induced by As. In summary, the inclusion of HP and CA in the growth medium sustained plant performance in the presence of As toxicity by regulating physiological and biochemical characteristics, chloroplastic antioxidant enzymes, the AsA-GSH cycle and photosynthesis processes, thereby demonstrating their significant potential to confer resistance to maize through the mitigation of As-induced oxidative damage and the safeguarding of photosynthetic mechanisms.
Collapse
Affiliation(s)
- Fevzi Elbasan
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| | - Busra Arikan
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Necmettin Erbakan University, Faculty of Science, Department of Molecular Biology and Genetics, 42090, Konya, Turkey.
| | - Aysenur Tofan
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| | - Evren Yildiztugay
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| |
Collapse
|
5
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
6
|
Hassan A, Akram W, Rizwana H, Aftab ZEH, Hanif S, Anjum T, Alwahibi MS. The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance. Microorganisms 2023; 11:2603. [PMID: 37894261 PMCID: PMC10609423 DOI: 10.3390/microorganisms11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Fusarium wilt diseases severely influence the growth and productivity of numerous crop plants. The consortium of antagonistic rhizospheric Bacillus strains and quercetin were evaluated imperatively as a possible remedy to effectively manage the Fusarium wilt disease of tomato plants. The selection of Bacillus strains was made based on in-vitro antagonistic bioassays against Fusarium oxysporum f.sp. lycoprsici (FOL). Quercetin was selected after screening a library of phytochemicals during in-silico molecular docking analysis using tomato LysM receptor kinases "SILKY12" based on its dual role in symbiosis and plant defense responses. After the selection of test materials, pot trials were conducted where tomato plants were provided consortium of Bacillus strains as soil drenching and quercetin as a foliar spray in different concentrations. The combined application of consortium (Bacillus velezensis strain BS6, Bacillus thuringiensis strain BS7, Bacillus fortis strain BS9) and quercetin (1.0 mM) reduced the Fusarium wilt disease index up to 69%, also resulting in increased plant growth attributes. Likewise, the imperative application of the Bacillus consortium and quercetin (1.0 mM) significantly increased total phenolic contents and activities of the enzymes of the phenylpropanoid pathway. Non-targeted metabolomics analysis was performed to investigate the perturbation in metabolites. FOL pathogen negatively affected a range of metabolites including carbohydrates, amino acids, phenylpropanoids, and organic acids. Thereinto, combined treatment of Bacillus consortium and quercetin (1.0 mM) ameliorated the production of different metabolites in tomato plants. These findings prove the imperative use of Bacillus consortium and quercetin as an effective and sustainable remedy to manage Fusarium wilt disease of tomato plants and to promote the growth of tomato plants under pathogen stress conditions.
Collapse
Affiliation(s)
- Ali Hassan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Zill-E-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Sana Hanif
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
7
|
Gutsch A, Berni R, Hausman JF, Sutera FM, Dehsorkhi A, Torabi-Pour N, Saffie-Siebert S, Guerriero G. A Study on the Use of the Phyto-Courier Technology in Tobacco Leaves Infected by Agrobacterium tumefaciens. Int J Mol Sci 2023; 24:14153. [PMID: 37762454 PMCID: PMC10531687 DOI: 10.3390/ijms241814153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Climate change results in exceptional environmental conditions and drives the migration of pathogens to which local plants are not adapted. Biotic stress disrupts plants' metabolism, fitness, and performance, ultimately impacting their productivity. It is therefore necessary to develop strategies for improving plant resistance by promoting stress responsiveness and resilience in an environmentally friendly and sustainable way. The aim of this study was to investigate whether priming tobacco plants with a formulation containing silicon-stabilised hybrid lipid nanoparticles functionalised with quercetin (referred to as GS3 phyto-courier) can protect against biotic stress triggered by Agrobacterium tumefaciens leaf infiltration. Tobacco leaves were primed via infiltration or spraying with the GS3 phyto-courier, as well as with a buffer (B) and free quercetin (Q) solution serving as controls prior to the biotic stress. Leaves were then sampled four days after bacterial infiltration for gene expression analysis and microscopy. The investigated genes increased in expression after stress, both in leaves treated with the phyto-courier and control solutions. A trend towards lower values was observed in the presence of the GS3 phyto-courier for genes encoding chitinases and pathogenesis-related proteins. Agroinfiltrated leaves sprayed with GS3 confirmed the significant lower expression of the pathogenesis-related gene PR-1a and showed higher expression of peroxidase and serine threonine kinase. Microscopy revealed swelling of the chloroplasts in the parenchyma of stressed leaves treated with B; however, GS3 preserved the chloroplasts' mean area under stress. Furthermore, the UV spectrum of free Q solution and of quercetin freshly extracted from GS3 revealed a different spectral signature with higher values of maximum absorbance (Amax) of the flavonoid in the latter, suggesting that the silicon-stabilised hybrid lipid nanoparticles protect quercetin against oxidative degradation.
Collapse
Affiliation(s)
- Annelie Gutsch
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| | - Roberto Berni
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| | - Flavia Maria Sutera
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, UK; (F.M.S.); (A.D.); (N.T.-P.)
| | - Ashkan Dehsorkhi
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, UK; (F.M.S.); (A.D.); (N.T.-P.)
| | - Nissim Torabi-Pour
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, UK; (F.M.S.); (A.D.); (N.T.-P.)
| | | | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| |
Collapse
|
8
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
9
|
Fang T, Zhou S, Qian C, Yan X, Yin X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. Integrated metabolomics and transcriptomics insights on flavonoid biosynthesis of a medicinal functional forage, Agriophyllum squarrosum (L.), based on a common garden trial covering six ecotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:985572. [PMID: 36204072 PMCID: PMC9530573 DOI: 10.3389/fpls.2022.985572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., well known as sandrice, is an important wild forage in sandy areas and a promising edible and medicinal resource plant with great domestication potential. Previous studies showed flavonoids are one of the most abundant medicinal ingredients in sandrice, whereby isorhamnetin and isorhamnetin-3-glycoside were the top two flavonols with multiple health benefits. However, the molecular regulatory mechanisms of flavonoids in sandrice remain largely unclear. Based on a common garden trial, in this study, an integrated transcriptomic and flavonoids-targeted metabolomic analysis was performed on the vegetative and reproductive periods of six sandrice ecotypes, whose original habitats covered a variety of environmental factor gradients. Multiple linear stepwise regression analysis unveiled that flavonoid accumulation in sandrice was positively correlated with temperature and UVB and negatively affected by precipitation and sunshine duration, respectively. Weighted co-expression network analysis (WGCNA) indicated the bHLH and MYB transcription factor (TF) families might play key roles in sandrice flavonoid biosynthesis regulation. A total of 22,778 differentially expressed genes (DEGs) were identified between ecotype DL and ecotype AEX, the two extremes in most environmental factors, whereby 85 DEGs could be related to known flavonoid biosynthesis pathway. A sandrice flavonoid biosynthesis network embracing the detected 23 flavonoids in this research was constructed. Gene families Plant flavonoid O-methyltransferase (AsPFOMT) and UDP-glucuronosyltransferase (AsUGT78D2) were identified and characterized on the transcriptional level and believed to be synthases of isorhamnetin and isorhamnetin-3-glycoside in sandrice, respectively. A trade-off between biosynthesis of rutin and isorhamnetin was found in the DL ecotype, which might be due to the metabolic flux redirection when facing environmental changes. This research provides valuable information for understanding flavonoid biosynthesis in sandrice at the molecular level and laid the foundation for precise development and utilization of this functional resource forage.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Zhou
- Faculty of Environmental Science and Engineering, Shanxi Institute of Science and Technology, Jincheng, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Pengshu Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiu Liao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Shi
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| |
Collapse
|
10
|
Jańczak-Pieniążek M, Migut D, Piechowiak T, Balawejder M. Assessment of the Impact of the Application of a Quercetin-Copper Complex on the Course of Physiological and Biochemical Processes in Wheat Plants ( Triticum aestivum L.) Growing under Saline Conditions. Cells 2022; 11:cells11071141. [PMID: 35406704 PMCID: PMC8997712 DOI: 10.3390/cells11071141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin–copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L−1 [Q1], 500 mg∙L−1 [Q2] and 1000 mg∙L−1 [Q3]) on the physiological and biochemical processes occurring in wheat plants subjected to salt stress was investigated. The plants were given two sprays of Q-Cu (II) solution, and their physiological parameters were examined both 1 and 7 days after each application of this solution. The level of ROS and the activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD] and guaiacol peroxidase [GPOX]) were also determined. It has been shown that spraying with Q2 and Q3 solutions improves the chlorophyll content, the values of chlorophyll fluorescence parameters (the photochemical efficiency of PS II [Fv/Fm], the maximum quantum yield of primary photochemistry [Fv/F0], and the performance index of PS II [PI]), and gas exchange (net photosynthetic rate [Pn], stomatal conductance [gs], transpiration rate [E] and intercellular CO2 concentration [Ci]). As a result of the application of Q2 and Q3 solutions, the level of ROS and the activity of the antioxidant enzymes tested decreased, which means that these concentrations are most effective in counteracting the effects of salt stress.
Collapse
Affiliation(s)
- Marta Jańczak-Pieniążek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Correspondence:
| | - Dagmara Migut
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Tomasz Piechowiak
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| | - Maciej Balawejder
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| |
Collapse
|