1
|
Chen D, Xin Y, Guo J, Chen S. Mettl14 and Mettl3 Work Cooperatively to Regulate Retinal Development. Cell Biochem Funct 2025; 43:e70039. [PMID: 39739431 DOI: 10.1002/cbf.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
N6-methylenadenosine (m6A) modification, the most abundant epitranscriptomic modification in eukaryotic mRNAs, has been shown to play crucial roles in regulating various aspects of mRNA metabolism and functions. In this study, we applied the Cre-Loxp conditional knockout system to investigate the role of the core components of the m6A methyltransferase complex, METTL14 and METTL3, in retinal development. Our results showed that the double absence of Mettl14 and Mettl3 caused structural disturbance in the retina and prolonged the proliferation activity of retinal progenitor cells. Interestingly, the deletion of Mettl14 and Mettl3 did not affect the generation of various retinal cells, but severely disrupted their distribution. In addition, double deletion of Mettl14 together with Mettl3 caused a stronger phenotype than did single deletion of Mettl14. In conclusion, our study demonstrated that Mettl14 and Mettl3 work cooperatively to regulate retinal development.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanling Xin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Matsushita T, Onishi A, Matsuyama T, Masuda T, Ogino Y, Kageyama M, Takahashi M, Uchiumi F. Rapid and efficient generation of mature retinal organoids derived from human pluripotent stem cells via optimized pharmacological modulation of Sonic hedgehog, activin A, and retinoic acid signal transduction. PLoS One 2024; 19:e0308743. [PMID: 39121095 PMCID: PMC11315325 DOI: 10.1371/journal.pone.0308743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
Human retinal organoids have become indispensable tools for retinal disease modeling and drug screening. Despite its versatile applications, the long timeframe for their differentiation and maturation limits the throughput of such research. Here, we successfully shortened this timeframe by accelerating human retinal organoid development using unique pharmacological approaches. Our method comprised three key steps: 1) a modified self-formed ectodermal autonomous multizone (SEAM) method, including dual SMAD inhibition and bone morphogenetic protein 4 treatment, for initial neural retinal induction; 2) the concurrent use of a Sonic hedgehog agonist SAG, activin A, and all-trans retinoic acid for rapid retinal cell specification; and 3) switching to SAG treatment alone for robust retinal maturation and lamination. The generated retinal organoids preserved typical morphological features of mature retinal organoids, including hair-like surface structures and well-organized outer layers. These features were substantiated by the spatial immunostaining patterns of several retinal cell markers, including rhodopsin and L/M opsin expression in the outermost layer, which was accompanied by reduced ectopic cone photoreceptor generation. Importantly, our method required only 90 days for retinal organoid maturation, which is approximately two-thirds the time necessary for other conventional methods. These results indicate that thoroughly optimized pharmacological interventions play a pivotal role in rapid and precise photoreceptor development during human retinal organoid differentiation and maturation. Thus, our present method may expedite human retinal organoid research, eventually contributing to the development of better treatment options for various degenerative retinal diseases.
Collapse
Affiliation(s)
- Tokiyoshi Matsushita
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Takahiro Matsuyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Yoko Ogino
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| | - Masaaki Kageyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Fumiaki Uchiumi
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
4
|
Duan C, Ding C, Sun X, Mao S, Liang Y, Liu X, Ding X, Chen J, Tang S. Retinal organoids with X-linked retinoschisis RS1 (E72K) mutation exhibit a photoreceptor developmental delay and are rescued by gene augmentation therapy. Stem Cell Res Ther 2024; 15:152. [PMID: 38816767 PMCID: PMC11140964 DOI: 10.1186/s13287-024-03767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS. METHODS hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy. RESULTS ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation. CONCLUSIONS The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.
Collapse
Affiliation(s)
- Chunwen Duan
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan, China
| | | | - Xihao Sun
- Aier Eye Institute, Changsha, Hunan, China
| | - Shengru Mao
- Aier Eye Institute, Changsha, Hunan, China
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Xinyu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong, China.
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
- Guangzhou Aier Eye Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
McDonald A, Wijnholds J. Retinal Ciliopathies and Potential Gene Therapies: A Focus on Human iPSC-Derived Organoid Models. Int J Mol Sci 2024; 25:2887. [PMID: 38474133 PMCID: PMC10932180 DOI: 10.3390/ijms25052887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.
Collapse
Affiliation(s)
- Andrew McDonald
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zhao H, Yan F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev Rep 2024; 20:495-508. [PMID: 38079086 PMCID: PMC10837228 DOI: 10.1007/s12015-023-10661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/03/2024]
Abstract
Retinal diseases are leading causes of blindness globally. Developing new drugs is of great significance for preventing vision loss. Current drug discovery relies mainly on two-dimensional in vitro models and animal models, but translation to human efficacy and safety is biased. In recent years, the emergence of retinal organoid technology platforms, utilizing three-dimensional microenvironments to better mimic retinal structure and function, has provided new platforms for exploring pathogenic mechanisms and drug screening. This review summarizes the latest advances in retinal organoid technology, emphasizing its application advantages in high-throughput drug screening, efficacy and toxicity evaluation, and translational medicine research. The review also prospects the combination of emerging technologies such as organ-on-a-chip, 3D bioprinting, single cell sequencing, gene editing with retinal organoid technology, which is expected to further optimize retinal organoid models and advance the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medicine School, Kunming Medical University, 1168 Yuhua Street, Chunrong West Road, Chenggong District, Kunming, Yunnan, 650500, China.
| |
Collapse
|
7
|
Heredero Berzal A, Wagstaff EL, ten Asbroek ALMA, ten Brink JB, Bergen AA, Boon CJF. The Analysis of Embryoid Body Formation and Its Role in Retinal Organoid Development. Int J Mol Sci 2024; 25:1444. [PMID: 38338722 PMCID: PMC10855324 DOI: 10.3390/ijms25031444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Within the last decade, a wide variety of protocols have emerged for the generation of retinal organoids. A subset of studies have compared protocols based on stem cell source, the physical features of the microenvironment, and both internal and external signals, all features that influence embryoid body and retinal organoid formation. Most of these comparisons have focused on the effect of signaling pathways on retinal organoid development. In this study, our aim is to understand whether starting cell conditions, specifically those involved in embryoid body formation, affect the development of retinal organoids in terms of differentiation capacity and reproducibility. To investigate this, we used the popular 3D floating culture method to generate retinal organoids from stem cells. This method starts with either small clumps of stem cells generated from larger clones (clumps protocol, CP) or with an aggregation of single cells (single cells protocol, SCP). Using histological analysis and gene-expression comparison, we found a retention of the pluripotency capacity on embryoid bodies generated through the SCP compared to the CP. Nonetheless, these early developmental differences seem not to impact the final retinal organoid formation, suggesting a potential compensatory mechanism during the neurosphere stage. This study not only facilitates an in-depth exploration of embryoid body development but also provides valuable insights for the selection of the most suitable protocol in order to study retinal development and to model inherited retinal disorders in vitro.
Collapse
Affiliation(s)
- Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Jacoline B. ten Brink
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Bombieri C, Corsi A, Trabetti E, Ruggiero A, Marchetto G, Vattemi G, Valenti MT, Zipeto D, Romanelli MG. Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids. Int J Mol Sci 2024; 25:1014. [PMID: 38256087 PMCID: PMC10815694 DOI: 10.3390/ijms25021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| |
Collapse
|
9
|
Carido M, Völkner M, Steinheuer LM, Wagner F, Kurth T, Dumler N, Ulusoy S, Wieneke S, Norniella AV, Golfieri C, Khattak S, Schönfelder B, Scamozzi M, Zoschke K, Canzler S, Hackermüller J, Ader M, Karl MO. Reliability of human retina organoid generation from hiPSC-derived neuroepithelial cysts. Front Cell Neurosci 2023; 17:1166641. [PMID: 37868194 PMCID: PMC10587494 DOI: 10.3389/fncel.2023.1166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.
Collapse
Affiliation(s)
- Madalena Carido
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Maria Steinheuer
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Felix Wagner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, TU Dresden, Dresden, Germany
| | - Natalie Dumler
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Selen Ulusoy
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Stephanie Wieneke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - Cristina Golfieri
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Molecular and Cellular Bioengineering (CMCB), Stem Cell Engineering Facility, TU Dresden, Dresden, Germany
| | - Bruno Schönfelder
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Maria Scamozzi
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Katja Zoschke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Sebastian Canzler
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Mike O Karl
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| |
Collapse
|
10
|
Tresenrider A, Sridhar A, Eldred KC, Cuschieri S, Hoffer D, Trapnell C, Reh TA. Single-cell sequencing of individual retinal organoids reveals determinants of cell-fate heterogeneity. CELL REPORTS METHODS 2023; 3:100548. [PMID: 37671011 PMCID: PMC10475847 DOI: 10.1016/j.crmeth.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA sequencing (RNA-seq) multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10× methods produce highly concordant cell-class compositions and then expand sci-Plex to analyze the cell-class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to 6 weeks later. Our data show sci-Plex's potential to dramatically scale up the analysis of treatment conditions on relevant human models.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Kiara C. Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sophia Cuschieri
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Móvio MI, de Lima-Vasconcellos TH, Dos Santos GB, Echeverry MB, Colombo E, Mattos LS, Resende RR, Kihara AH. Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Semin Cell Dev Biol 2023; 144:77-86. [PMID: 36210260 DOI: 10.1016/j.semcdb.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have provided new methods to study neurodegenerative diseases. In addition to their wide application in neuronal disorders, hiPSCs technology can also encompass specific conditions, such as inherited retinal dystrophies. The possibility of evaluating alterations related to retinal disorders in 3D organoids increases the truthfulness of in vitro models. Moreover, both Alzheimer's (AD) and Parkinson's disease (PD) have been described as causing early retinal alterations, generating beta-amyloid protein accumulation, or affecting dopaminergic amacrine cells. This review addresses recent advances and future perspectives obtained from in vitro modeling of retinal diseases, focusing on retinitis pigmentosa (RP). Additionally, we depicted the possibility of evaluating changes related to AD and PD in retinal organoids obtained from potential patients long before the onset of the disease, constituting a valuable tool in early diagnosis. With this, we pointed out prospects in the study of retinal dystrophies and early diagnosis of AD and PD.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | | | - Marcela Bermudez Echeverry
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Leonardo S Mattos
- Biomedical Robotics Laboratory, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
12
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
13
|
Tresenrider A, Sridhar A, Eldred KC, Cuschieri S, Hoffer D, Trapnell C, Reh TA. Single-cell sequencing of individual retinal organoids reveals determinants of cell fate heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543087. [PMID: 37398481 PMCID: PMC10312535 DOI: 10.1101/2023.05.31.543087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA-seq multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10x methods produce highly concordant cell class compositions and then expand sci-Plex to analyze the cell class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to six weeks later. Our data show sci-Plex's potential to dramatically scale-up the analysis of treatment conditions on relevant human models.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Kiara C. Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sophia Cuschieri
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Martins-da-Silva A, Baroni M, Salomão KB, das Chagas PF, Bonfim-Silva R, Geron L, Cruzeiro GAV, da Silva WA, Corrêa CAP, Carlotti CG, de Paula Queiroz RG, Marie SKN, Brandalise SR, Yunes JA, Scrideli CA, Valera ET, Tone LG. Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma. Cell Mol Neurobiol 2023; 43:813-826. [PMID: 35366170 DOI: 10.1007/s10571-022-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Bezerra Salomão
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Ferreira das Chagas
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Pediatric Oncology, Harvard Medical School - Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Berber P, Bondarenko S, Michaelis L, Weber BHF. Transient Retention of Photoreceptor Outer Segments in Matrigel-Embedded Retinal Organoids. Int J Mol Sci 2022; 23:ijms232314893. [PMID: 36499228 PMCID: PMC9739155 DOI: 10.3390/ijms232314893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Retinal organoids (ROs) are three-dimensional retinal tissues, which are differentiated in vitro from induced pluripotent stem cells (iPSC), ultimately forming all main retinal cell types under defined culture conditions. ROs show several highly specialized retinal features, including the outgrowth of photoreceptor outer segments (OSs). In vivo, the photoreceptor OSs are enveloped and maintained by protrusions of retinal pigment epithelium (RPE) cells, the so-called apical microvilli, while ROs fail to recapitulate this critical interaction in culture development. Here, we define specific co-culture conditions aiming to compensate for the missing physical proximity of RPE and OSs in RO development. Accordingly, functional RPE cells and ROs were differentiated simultaneously from the same iPSC clone, the former resulting in byproduct RPE or bRPE cells. While some co-culture approaches indicated a temporary functional interaction between bRPE and RO photoreceptors, they did not improve the photoreceptor histoarchitecture. In contrast, embedding ROs in a basement membrane extract without bRPE cells showed a robust improvement in the rate of photoreceptor OS retention. RO embedding is a quick and easy method that greatly enhances the preservation of photoreceptor OSs, an important structure for modelling retinal diseases with the involvement of photoreceptors.
Collapse
Affiliation(s)
- Patricia Berber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Sofiia Bondarenko
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Lisa Michaelis
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Bernhard Heinrich Friedrich Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
16
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
17
|
Sanjurjo-Soriano C, Erkilic N, Damodar K, Boukhaddaoui H, Diakatou M, Garita-Hernandez M, Mamaeva D, Dubois G, Jazouli Z, Jimenez-Medina C, Goureau O, Meunier I, Kalatzis V. Retinoic acid delays initial photoreceptor differentiation and results in a highly structured mature retinal organoid. Stem Cell Res Ther 2022; 13:478. [PMID: 36114559 PMCID: PMC9482314 DOI: 10.1186/s13287-022-03146-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cell-derived retinal organoids are a valuable tool for disease modelling and therapeutic development. Many efforts have been made over the last decade to optimise protocols for the generation of organoids that correctly mimic the human retina. Most protocols use common media supplements; however, protocol-dependent variability impacts data interpretation. To date, the lack of a systematic comparison of a given protocol with or without supplements makes it difficult to determine how they influence the differentiation process and morphology of the retinal organoids. METHODS A 2D-3D differentiation method was used to generate retinal organoids, which were cultured with or without the most commonly used media supplements, notably retinoic acid. Gene expression was assayed using qPCR analysis, protein expression using immunofluorescence studies, ultrastructure using electron microscopy and 3D morphology using confocal and biphoton microscopy of whole organoids. RESULTS Retinoic acid delayed the initial stages of differentiation by modulating photoreceptor gene expression. At later stages, the presence of retinoic acid led to the generation of mature retinal organoids with a well-structured stratified photoreceptor layer containing a predominant rod population. By contrast, the absence of retinoic acid led to cone-rich organoids with a less organised and non-stratified photoreceptor layer. CONCLUSIONS This study proves the importance of supplemented media for culturing retinal organoids. More importantly, we demonstrate for the first time that the role of retinoic acid goes beyond inducing a rod cell fate to enhancing the organisation of the photoreceptor layer of the mature organoid.
Collapse
Affiliation(s)
- Carla Sanjurjo-Soriano
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, Univ Montpellier, CHU, Montpellier, France
| | - Krishna Damodar
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Michalitsa Diakatou
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Marcela Garita-Hernandez
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daria Mamaeva
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Gregor Dubois
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Zhour Jazouli
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Olivier Goureau
- Institut de La Vision, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, Univ Montpellier, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| |
Collapse
|
18
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
19
|
Maruyama H, Sakai S, Ieda M. Endothelin-1 Alters BMP Signaling to Promote Proliferation of Pulmonary Artery Smooth Muscle Cells. Can J Physiol Pharmacol 2022; 100:1018-1027. [PMID: 36037530 DOI: 10.1139/cjpp-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal outgrowth of pulmonary artery smooth muscle cells (PASMCs) of the media. Abundant expression of endothelin-1 (ET-1) and activated p38 mitogen-activated protein kinase (p38MAPK) has been observed in PAH patients. p38MAPK has been implicated in cell proliferation. An unspecified disturbance in bone morphogenetic protein (BMP) signaling may be involved in the development of PAH. Type I receptors (BMPR1A and BMPR1B) and type II receptors (BMPR2) transduce signals via two distinct pathways, i.e., canonical and non-canonical pathways, activating Smad1/5/8 and p38MAPK, respectively. BMPR1B expression was previously reported to be enhanced in the PASMCs of patients with idiopathic PAH. BMP15 binds specifically to BMPR1B. We assessed the effects of ET-1 on BMP receptor expression and cell proliferation. BMP2 increased BMPR1B expression in human PASMCs after pretreatment with ET-1 in vitro. Although BMP2 alone did not affect PASMC proliferation, BMP2 treatment after ET-1 pretreatment significantly accelerated PASMC proliferation. PH-797804, a selective p38MAPK inhibitor, abrogated this proliferation. Similarly, after ET-1 pretreatment, BMP15 significantly accelerated the proliferation of PASMCs, whereas stimulation with BMP15 alone did not. In conclusion, in PASMCs, ET-1 exposure under pathological conditions alters BMP signaling to activate p38MAPK, resulting in cell proliferation.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- National Hospital Organisation Kasumigaura Medical Center Internal Medicine, Cardiology, Tsuchiura, Japan;
| | - Satoshi Sakai
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| | - Masaki Ieda
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| |
Collapse
|
20
|
Lai YF, Lin TY, Ho PK, Chen YH, Huang YC, Lu DW. Erythropoietin in Optic Neuropathies: Current Future Strategies for Optic Nerve Protection and Repair. Int J Mol Sci 2022; 23:ijms23137143. [PMID: 35806148 PMCID: PMC9267007 DOI: 10.3390/ijms23137143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.
Collapse
Affiliation(s)
- Yi-Fen Lai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Ting-Yi Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| |
Collapse
|
21
|
Grigoryan EN. Self-Organization of the Retina during Eye Development, Retinal Regeneration In Vivo, and in Retinal 3D Organoids In Vitro. Biomedicines 2022; 10:1458. [PMID: 35740479 PMCID: PMC9221005 DOI: 10.3390/biomedicines10061458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Self-organization is a process that ensures histogenesis of the eye retina. This highly intricate phenomenon is not sufficiently studied due to its biological complexity and genetic heterogeneity. The review aims to summarize the existing central theories and ideas for a better understanding of retinal self-organization, as well as to address various practical problems of retinal biomedicine. The phenomenon of self-organization is discussed in the spatiotemporal context and illustrated by key findings during vertebrate retina development in vivo and retinal regeneration in amphibians in situ. Described also are histotypic 3D structures obtained from the disaggregated retinal progenitor cells of birds and retinal 3D organoids derived from the mouse and human pluripotent stem cells. The review highlights integral parts of retinal development in these conditions. On the cellular level, these include competence, differentiation, proliferation, apoptosis, cooperative movements, and migration. On the physical level, the focus is on the mechanical properties of cell- and cell layer-derived forces and on the molecular level on factors responsible for gene regulation, such as transcription factors, signaling molecules, and epigenetic changes. Finally, the self-organization phenomenon is discussed as a basis for the production of retinal organoids, a promising model for a wide range of basic scientific and medical applications.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
22
|
Shhedding New Light on the Role of Hedgehog Signaling in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23073630. [PMID: 35408986 PMCID: PMC8998466 DOI: 10.3390/ijms23073630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.
Collapse
|
23
|
Development of vascular disease models to explore disease causation and pathomechanisms of rare vascular diseases. Semin Immunopathol 2022; 44:259-268. [PMID: 35233690 PMCID: PMC8887661 DOI: 10.1007/s00281-022-00925-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
As the field of medicine is striving forward heralded by a new era of next-generation sequencing (NGS) and integrated technologies such as bioprinting and biological material development, the utility of rare monogenetic vascular disease modeling in this landscape is starting to emerge. With their genetic simplicity and broader applicability, these patient-specific models are at the forefront of modern personalized medicine. As a collective, rare diseases are a significant burden on global healthcare systems, and rare vascular diseases make up a significant proportion of this. High costs are due to a lengthy diagnostic process, affecting all ages from infants to adults, as well as the severity and chronic nature of the disease. Their complex nature requires sophisticated disease models and integrated approaches involving multidisciplinary teams. Here, we review these emerging vascular disease models, how they contribute to our understanding of the pathomechanisms in rare vascular diseases and provide useful platforms for therapeutic discovery.
Collapse
|
24
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|