1
|
Rodríguez-Serrano LM, Chávez-Hernández ME. Role of the CB2 Cannabinoid Receptor in the Regulation of Food Intake: A Systematic Review. Int J Mol Sci 2023; 24:17516. [PMID: 38139344 PMCID: PMC10743788 DOI: 10.3390/ijms242417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The CB2 cannabinoid receptor has been found in brain areas that are part of the reward system and has been shown to play a role in food intake regulation. Herein, we conducted a systematic review of studies assessing the role of the CB2 receptor in food intake regulation. Records from the PubMed, Scopus, and EBSCO databases were screened, resulting in 13 studies that were used in the present systematic review, following the PRISMA guidelines. A risk of bias assessment was carried out using the tool of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). The studies analyzed used two main strategies: (1) the intraperitoneal or intracerebroventricular administration of a CB2 agonist/antagonist; and (2) depletion of CB2 receptors via knockout in mice. Both strategies are useful in identifying the role of the CB2 receptor in food intake in standard and palatable diets. The conclusions derived from animal models showed that CB2 receptors are necessary for modulating food intake and mediating energy balance.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Serrano
- Facultad de Psicología, Universidad Anáhuac México, Universidad Anáhuac Avenue #46, Lomas Anáhuac, Huixquilucan 52786, Mexico;
| | | |
Collapse
|
2
|
Hernández-Guerrero C, García-Salcedo V, Buenrostro-Jauregui M, Sanchez-Castillo H, Aguilera-Reyes U, Martínez-Castro N, Galicia-Castillo O. Exposure to anandamide on young rats causes deficits in learning, temporal perception and induces changes in NMDA receptor expression. Behav Brain Res 2023; 445:114377. [PMID: 36868364 DOI: 10.1016/j.bbr.2023.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Human use of marijuana at an early age has been reported to lead to cognitive impairment. However, researchers have not yet clearly determined whether this impairment is due to marijuana-induced alterations in the developing nervous system and whether this deficit persists into adulthood after marijuana use has ceased. We administered anandamide to developing rats to assess the effect of cannabinoids on development. We subsequently evaluated learning and performance on a temporal bisection task in adulthood and assessed the expression of genes encoding principal subunits of NMDA receptors (Grin1, Grin2A, and Grin2B) in the hippocampus and prefrontal cortex. Rats in two age groups, namely, 21-day-old and 150-day-old rats, received intraperitoneal injections of anandamide or the vehicle for 14 days. Both groups performed a temporal bisection test, which included listening to tones of different durations and classifying them as short or long. The expression of the Grin1, Grin2A and Grin2B mRNAs was evaluated using quantitative PCR in both age groups after extracting mRNA from the hippocampus and prefrontal cortex. We observed a learning impairment in the temporal bisection task (p < 0.05) and changes in the response latency (p < 0.05) in rats that received anandamide. Furthermore, these rats exhibited decreased expression of Grin2b (p = 0.001) compared to those that received the vehicle. In human subjects, the use of cannabinoids during development induces a long-term deficit, but this deficit is not observed in subjects who use cannabinoids in adulthood. Rats treated with anandamide earlier in development took longer to learn the task, suggesting that anandamide exerts a harmful effect on cognition in developing rats. Administration of anandamide during early stages of development induced deficits in learning and other cognitive processes that depend on an adequate estimation of time. The cognitive demands of the environment must be considered when evaluating the cognitive effects of cannabinoids on developing or mature brains. High cognitive demands might induce differential expression of NMDA receptors that improves cognitive capacity, overcoming altered glutamatergic function.
Collapse
Affiliation(s)
| | - Verónica García-Salcedo
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico; Laboratorio de Comportamiento Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca de Lerdo 50200, Mexico.
| | - Mario Buenrostro-Jauregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| | - Hugo Sanchez-Castillo
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, UNAM, Mexico City 04510, Mexico.
| | - Ulises Aguilera-Reyes
- Laboratorio de Comportamiento Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca de Lerdo 50200, Mexico.
| | - Noemi Martínez-Castro
- Departamento de Salud, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| | - Oscar Galicia-Castillo
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| |
Collapse
|
3
|
Treves N, Mor N, Allegaert K, Bassalov H, Berkovitch M, Stolar OE, Matok I. Efficacy and safety of medical cannabinoids in children: a systematic review and meta-analysis. Sci Rep 2021; 11:23462. [PMID: 34873203 PMCID: PMC8648720 DOI: 10.1038/s41598-021-02770-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/09/2021] [Indexed: 01/06/2023] Open
Abstract
Despite the increased use of medical cannabinoids, the efficacy and safety of the treatment among children remain uncertain. The objective was to study the efficacy and safety of medical cannabinoids in children. The search included studies through 11-May-2020. Selection criteria included studies evaluating efficacy and safety outcomes of medical cannabinoids (tetrahydrocannabinol, cannabidiol and other cannabis derivatives) versus control in children, independently assessed by two reviewers. Eight studies were included, all of which are randomized controlled trials. Cannabidiol is associated with 50% reduction in seizures rate (Relative Risk (RR) = 1.69, 95% CI [1.20-2.36]) and caregiver global impression of change (Median Estimated difference = (- 1), 95%CI [- 1.39-(- 0.60)]) in Dravet syndrome, compared to placebo. While cannabidiol was associated with a reduction in reported seizure events (RR = 0.59, 95% CI [0.36-0.97]), no association was found in products contained also tetrahydrocannabinol (RR = 1.35, 95% CI [0.46-4.03]). Higher dose of cannabidiol was associated with decreased appetite (RR = 2.40, 95% CI [1.39-4.15]). A qualitative assessment suggests that medical cannabinoids might be associated with adverse mental events. In conclusion, cannabidiol is associated with clinical improvement in Dravet syndrome. However, cannabidiol is also associated with decreased appetite. Adverse mental events were reported as well, however, more research should be performed to assess well this outcome.
Collapse
Affiliation(s)
- Nir Treves
- Division of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Mor
- Division of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Matitiahu Berkovitch
- Clinical Pharmacology Unit, Shamir Medical Center (Assaf Harofeh), Zerifin, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Orit E Stolar
- The Autism Center, Alut, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Ilan Matok
- Department of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy and the David R. Bloom Center of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|