1
|
Fang X, Zhuang X, Zheng L, Lv Y, Gao F, Mo C, Zheng X. SQSTM1 upregulation-induced iron overload triggers endothelial ferroptosis in nicotine-exacerbated atherosclerosis. Life Sci 2025; 361:123330. [PMID: 39719169 DOI: 10.1016/j.lfs.2024.123330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Nicotine-exacerbated atherosclerosis significantly increases global mortality. Endothelial cells, which line the interior of blood vessels, are crucial for maintaining vascular function. How nicotine is involved in vascular remodeling in atherosclerosis via modulating endothelial dysfunction remains unknown. MATERIALS AND METHODS Comprehensive gene expression analyses identified key genes upregulated in the ferroptosis pathway in smoking-exacerbated atherosclerosis. Predictive models integrating these ferroptosis-related genes were constructed to differentiate atherosclerotic plaques. KEY FINDINGS Here, we reveal that ferroptosis mediates nicotine-induced endothelial dysfunction, exacerbating atherosclerosis. Mechanistically, nicotine elevates sequestosome 1 (SQSTM1), leading to iron overload and an increase in reactive oxygen species (ROS) and the levels of ferroptosis markers heme-oxygenase 1 (HMOX1) and prostaglandin-endoperoxide synthase 2 (PTGS2), contributing to ferroptosis in endothelial cells and the aberrant production of inflammatory factors. Pharmacological inhibition of ferroptosis and normalization of iron levels by knocking down SQSTM1 mitigate endothelial ferroptosis and reduce production of pro-inflammatory factors. Diagnostically, human plasma levels of HMOX1, SQSTM1, and PTGS2 are elevated in smokers with atherosclerosis but reduce in ex-smokers. Predictive models, including a support vector machine integrating these ferroptosis-related genes, effectively differentiate between early- and advanced-stage atherosclerotic plaques. SIGNIFICANCE SQSTM1 upregulation-induced iron overload triggers endothelial ferroptosis in nicotine-exacerbated atherosclerosis, suggesting excellent predictive efficacy for atherosclerosis development and potential for clinical applications. TRIAL REGISTRATION This study has been registered in the Chinese Clinical Trial Registry (ChiCTR2400083484, Registration Date: April 26, 2024).
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Xiu'e Zhuang
- Department of Anesthesiology, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian 362000, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yi Lv
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road", Fuzhou, Fujian 350001, China.
| |
Collapse
|
2
|
Mudimela S, Giridharan VV, Janardhan S. Molecular Docking, Synthesis, and Characterization of Furanyl-Pyrazolyl Acetamide and 2,4-Thiazolidinyl-Furan-3-Carboxamide Derivatives as Neuroinflammatory Protective Agents. Chem Biodivers 2024; 21:e202301260. [PMID: 38513005 DOI: 10.1002/cbdv.202301260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Microglia are key immune cells in the brain that maintain homeostasis and defend against immune threats. Targeting the dysfunctional microglia is one of the most promising approaches to inhibit neuroinflammation. In the current study, a diverse series of molecular hybrids were designed and screened through molecular docking against two neuroinflammatory targets, namely HMGB1 (2LY4) and HMGB1 Box A (4QR9) proteins. Based on the outcomes of docking scores fifteen compounds; ten furanyl-pyrazolyl acetamides 11(a-j), and five 2,4-thiazolidinyl-furan-3-carboxamide 15(a-e) derivatives were selected for further synthesis, followed by biological evaluation. The selected compounds, 11(a-j) and 15(a-e) were successfully synthesized with moderate to good yields, and structures were confirmed by IR, NMR, and mass spectra. The in-vitro cytotoxicity was evaluated on microglial cells namely BV-2, N-9, HMO6, leukemic HAP1, and human fibroblast cells. Further western-blot analysis revealed that 11h, 11f, 11c, 11j, 15d, 15c, 15e, and 15b compounds significantly suppressed anti-inflammatory markers such as TNF-α, IL-1, IL-6, and Bcl-2. All derivatives were moderate in potency compared to reference doxorubicin and could potentially act as novel anti-neuroinflammatory agents. This study can act as a beacon for further research in the application of furan-pyrazole and furan-2,4-thiazolidinediones as lead moieties for anti-neuroinflammatory and related diseases.
Collapse
Affiliation(s)
- Sowjanya Mudimela
- Faculty of Pharmaceutical Sciences, PES University,Hanumanth Nagar, Bangalore, India
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Saravanan Janardhan
- Faculty of Pharmaceutical Sciences, PES University,Hanumanth Nagar, Bangalore, India
| |
Collapse
|
3
|
Liu Z, Yoon CS, Lee H, Lee HK, Lee DS. Linderone Isolated from Lindera erythrocarpa Exerts Antioxidant and Anti-Neuroinflammatory Effects via NF-κB and Nrf2 Pathways in BV2 and HT22 Cells. Int J Mol Sci 2023; 24:ijms24087569. [PMID: 37108731 PMCID: PMC10141370 DOI: 10.3390/ijms24087569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Linderone is a major compound in Lindera erythrocarpa and exhibits anti-inflammatory effects in BV2 cells. This study investigated the neuroprotective effects and mechanisms of linderone action in BV2 and HT22 cells. Linderone suppressed lipopolysaccharide (LPS)-induced inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines (e.g., tumor necrosis factor alpha, interleukin-6, and prostaglandin E-2) in BV2 cells. Linderone treatment also inhibited the LPS-induced activation of p65 nuclear factor-kappa B, protecting against oxidative stress in glutamate-stimulated HT22 cells. Furthermore, linderone activated the translocation of nuclear factor E2-related factor 2 and induces the expression of heme oxygenase-1. These findings provided a mechanistic explanation of the antioxidant and anti-neuroinflammatory effects of linderone. In conclusion, our study demonstrated the therapeutic potential of linderone in neuronal diseases.
Collapse
Affiliation(s)
- Zhiming Liu
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Republic of Korea
| | - Chi-Su Yoon
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju-si 28116, Republic of Korea
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Republic of Korea
| | - Hyeong-Kyu Lee
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
4
|
Lee H, Liu Z, Dong L, Lee DY, Yoon D, Oh H, Kim YC, An RB, Lee DS. Anti-Neuroinflammatory and Neuroprotective Effect of Intermedin B Isolated from the Curcuma longa L. via NF-κB and ROS Inhibition in BV2 Microglia and HT22 Hippocampal Cells. Int J Mol Sci 2023; 24:ijms24087390. [PMID: 37108568 PMCID: PMC10138482 DOI: 10.3390/ijms24087390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Compounds derived from Curcuma longa L. (C. longa) have been extensively studied and reported to be effective and safe for the prevention and treatment of various diseases, but most research has been focused on curcuminoids derived from C. longa. As neurodegenerative diseases are associated with oxidation and inflammation, the present study aimed to isolate and identify active compounds other than curcuminoids from C. longa to develop substances to treat these diseases. Seventeen known compounds, including curcuminoids, were chromatographically isolated from the methanol extracts of C. longa, and their chemical structures were identified using 1D and 2D NMR spectroscopy. Among the isolated compounds, intermedin B exhibited the best antioxidant effect in the hippocampus and anti-inflammatory effect in microglia. Furthermore, intermedin B was confirmed to inhibit the nuclear translocation of NF-κB p-65 and IκBα, exerting anti-inflammatory effects and inhibiting the generation of reactive oxygen species, exerting neuroprotective effects. These results highlight the research value of active components other than curcuminoids in C. longa-derived compounds and suggest that intermedin B may be a promising candidate for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Linsha Dong
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Ren-Bo An
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
5
|
Effects of Compounds Isolated from Lindera erythrocarpa on Anti-Inflammatory and Anti-Neuroinflammatory Action in BV2 Microglia and RAW264.7 Macrophage. Int J Mol Sci 2022; 23:ijms23137122. [PMID: 35806130 PMCID: PMC9267112 DOI: 10.3390/ijms23137122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Lindera erythrocarpa contains various constituents such as cyclopentenedione-, flavonoid-, and chalcone-type components. In this study, a novel bi-linderone derivative and 17 known compounds were isolated from the leaves of L. erythrocarpa by using various chromatographic methods. The structures of the components were determined from nuclear magnetic resonance and mass spectrometry data. All isolated compounds were tested for anti-inflammatory and anti-neuroinflammatory activities in lipopolysaccharide (LPS)-induced BV2 and RAW264.7 cells. Some of these compounds showed anti-inflammatory effects by inhibiting the nitric oxide (NO) produced by LPS. In particular, linderaspirone A (16), bi-linderone (17) and novel compound demethoxy-bi-linderone (18) showed significant inhibitory effects on the production of prostaglandin E2 (PGE2), tumor necrosis factor-α, and interleukin-6. The three compounds also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are pro-inflammatory proteins, and the activation of nuclear factor κB (NF-κB). Therefore, linderaspirone A (16), bi-linderone (17), and demethoxy-bi-linderone (18) isolated from the leaves of L. erythrocarpa have therapeutic potential in neuroinflammatory diseases.
Collapse
|
6
|
Wu T, Wang G, Xiong Z, Xia Y, Song X, Zhang H, Wu Y, Ai L. Probiotics Interact With Lipids Metabolism and Affect Gut Health. Front Nutr 2022; 9:917043. [PMID: 35711544 PMCID: PMC9195177 DOI: 10.3389/fnut.2022.917043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have attracted much attention due to their ability to modulate host intestinal microbe, participate in nutrient metabolism or immunomodulatory. Both inflammatory bowel disease (IBD) and bowel cancer are digestive system disease, which have become a global public health problem due to their unclear etiology, difficult to cure, and repeated attacks. Disturbed gut microbiota and abnormal lipid metabolism would increase the risk of intestinal inflammation. However, the link between lipid metabolism, probiotics, and IBD is unclear. In this review, we found that different lipids and their derivatives have different effects on IBD and gut microbes. ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid, eicosapentaenoic acid, and their derivatives resolvin E1, resolvin D can inhibit oxidative stress and reactive oxygen species activate NFκB and MAPk pathway. While ω-6 PUFAs linoleic acid and arachidonic acid can be derived into leukotrienes and prostaglandins, which will aggravate IBD. Cholesterol can be converted into bile acids to promote lipid absorption and affect microbial survival and colonization. At the same time, it is affected by microbial bile salt hydrolase to regulate blood lipids. Low denstiy lipoprotein (LDL) is easily converted into oxidized LDL, thereby promoting inflammation, while high denstiy lipoprotein (HDL) has the opposite effect. Probiotics compete with intestinal microorganisms for nutrients or ecological sites and thus affect the structure of intestinal microbiota. Moreover, microbial short chain fatty acids, bile salt hydrolase, superoxide dismutase, glutathione, etc. can affect lipid metabolism and IBD. In conclusion, probiotics are directly or indirectly involved in lipids metabolism and their impact on IBD, which provides the possibility to explore the role of probiotics in improving gut health.
Collapse
Affiliation(s)
- Taoying Wu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Hunan Key Laboratory of Bean Products Processing and Safety Control, School of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Identification of Potential Anti-Neuroinflammatory Inhibitors from Antarctic Fungal Strain Aspergillus sp. SF-7402 via Regulating the NF-κB Signaling Pathway in Microglia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092851. [PMID: 35566201 PMCID: PMC9103959 DOI: 10.3390/molecules27092851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Microglia play a significant role in immune defense and tissue repair in the central nervous system (CNS). Microglial activation and the resulting neuroinflammation play a key role in the pathogenesis of neurodegenerative disorders. Recently, inflammation reduction strategies in neurodegenerative diseases have attracted increasing attention. Herein, we discovered and evaluated the anti-neuroinflammatory potential of compounds from the Antarctic fungi strain Aspergillus sp. SF-7402 in lipopolysaccharide (LPS)-stimulated BV2 cells. Four metabolites were isolated from the fungi through chemical investigations, namely, 5-methoxysterigmatocystin (1), sterigmatocystin (2), aversin (3), and 6,8-O-dimethylversicolorin A (4). Their chemical structures were elucidated by extensive spectroscopic analysis and HR-ESI-MS, as well as by comparison with those reported in literature. Anti-neuroinflammatory effects of the isolated metabolites were evaluated by measuring the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in LPS-activated microglia at non-cytotoxic concentrations. Sterigmatocystins (1 and 2) displayed significant effects on NO production and mild effects on TNF-α and IL-6 expression inhibition. The molecular mechanisms underlying this activity were investigated using Western blot analysis. Sterigmatocystin treatment inhibited NO production via downregulation of inducible nitric oxide synthase (iNOS) expression in LPS-stimulated BV2 cells. Additionally, sterigmatocystins reduced nuclear translocation of NF-κB. These results suggest that sterigmatocystins present in the fungal strain Aspergillus sp. are promising candidates for the treatment of neuroinflammatory diseases.
Collapse
|
8
|
Kuwanon T and Sanggenon a Isolated from Morus alba Exert Anti-Inflammatory Effects by Regulating NF-κB and HO-1/Nrf2 Signaling Pathways in BV2 and RAW264.7 Cells. Molecules 2021; 26:molecules26247642. [PMID: 34946724 PMCID: PMC8708433 DOI: 10.3390/molecules26247642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
We previously investigated the methanolic extract of Morus alba bark and characterized 11 compounds from the extract: kuwanon G (1), kuwanon E (2), kuwanon T (3), sanggenon A (4), sanggenon M (5), sanggenol A (6), mulberofuran B (7), mulberofuran G (8), moracin M (9), moracin O (10), and norartocarpanone (11). Herein, we investigated the anti-inflammatory effects of these compounds on microglial cells (BV2) and macrophages (RAW264.7). Among them, 3 and 4 markedly inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide in these cells, suggesting the anti-inflammatory properties of these two compounds. These compounds inhibited the production of prostaglandin E2, interleukin-6, and tumor necrosis factor-α, and the expression of inducible nitric oxide synthase and cyclooxygenase-2 following LPS stimulation. Pretreatment with 3 and 4 inhibited the activation of the nuclear factor kappa B signaling pathway in both cell types. The compounds also induced the expression of heme oxygenase (HO)-1 through the activation of nuclear factor erythroid 2-related factor 2. Suppressing the activity of HO-1 reversed the anti-inflammatory effects caused by pretreatment with 3 and 4, suggesting that the anti-inflammatory effects were regulated by HO-1. Taken together, 3 and 4 are potential candidates for developing therapeutic and preventive agents for inflammatory diseases.
Collapse
|