1
|
Sun L, Sun B, Zhang Y, Chen K. Kinetic properties of glucose 6-phosphate dehydrogenase and inhibition effects of several metal ions on enzymatic activity in vitro and cells. Sci Rep 2024; 14:5806. [PMID: 38461203 PMCID: PMC10924972 DOI: 10.1038/s41598-024-56503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Due to the non-degradable and persistent nature of metal ions in the environment, they are released into water bodies, where they accumulate in fish. In order to assess pollution in fish, the enzyme, glucose 6-phosphate dehydrogenase (G6PD), has been employed as a biomarker due to sensitivity to various ions. This study investigates the kinetic properties of the G6PD enzyme in yellow catfish (Pelteobagrus fulvidraco), and analyzes the effects of these metal ions on the G6PD enzyme activity in the ovarian cell line (CCO) of channel catfish (Ictalurus punctatus). IC50 values and inhibition types of G6PD were determined in the metal ions Cu2+, Al3+, Zn2+, and Cd2+. While, the inhibition types of Cu2+ and Al3+ were the competitive inhibition, Zn2+ and Cd2+ were the linear mixed noncompetitive and linear mixed competitive, respectively. In vitro experiments revealed an inverse correlation between G6PD activity and metal ion concentration, mRNA levels and enzyme activity of G6PD increased at the lower metal ion concentration and decreased at the higher concentration. Our findings suggest that metal ions pose a significant threat to G6PD activity even at low concentrations, potentially playing a crucial role in the toxicity mechanism of metal ion pollution. This information contributes to the development of a biomonitoring tool for assessing metal ion contamination in aquatic species.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
2
|
Gach J, Olejniczak T, Pannek J, Boratyński F. Fungistatic Effect of Phthalide Lactones on Rhodotorula mucilaginosa. Molecules 2023; 28:5423. [PMID: 37513295 PMCID: PMC10384090 DOI: 10.3390/molecules28145423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there is an increasing number of cases of fungal infections caused by opportunistic strains of the yeast Rhodotorula mucilaginosa, mainly in immunocompromised patients during hospitalization. The excessive use of antibiotics and azole compounds increases the risk of resistance to microorganisms. A new alternative to these drugs may be synthetic phthalide lactones with a structure identical to or similar to the natural ones found in celery plants, which show low toxicity and relatively high fungistatic activity. In the present study, the fungistatic activity of seven phthalide lactones was determined against R. mucilaginosa IHEM 18459. We showed that 3-n-butylidenephthalide, the most potent compound selected in the microdilution test, caused a dose-dependent decrease in dry yeast biomass. Phthalide accumulated in yeast cells and contributed to an increase in reactive oxygen species content. The synergistic effect of fluconazole resulted in a reduction in the azole concentration required for yeast inhibition. We observed changes in the color of the yeast cultures; thus, we conducted experiments to prove that the carotenoid profile was altered. The addition of lactones also triggered a decline in fatty acid methyl esters.
Collapse
Affiliation(s)
- Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jakub Pannek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
3
|
Khammassi M, Polito F, Kochti O, Kouki H, Souihi M, Khedhri S, Hamrouni L, Mabrouk Y, Amri I, De Feo V. Investigation on Chemical Composition, Antioxidant, Antifungal and Herbicidal Activities of Volatile Constituents from Deverra tortuosa (Desf.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2556. [PMID: 37447117 DOI: 10.3390/plants12132556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
This study aims to analyze the chemical composition of the essential oils (EOs) obtained from stems and umbels of D. tortuosa as well the assessment of their biological activity. EOs were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). The antioxidant properties were determined by DPPH and ABTS assays. The phytotoxic potential was assessed against dicots weeds (Sinapis arvensis and Trifolium campestre), monocots weeds (Lolium rigidum) and the crop Lepidium sativum. The antifungal activity was evaluated against four target phytopathogenic fungal strains. High diversity of compounds was detected in D. tortuosa Eos, varying among plant parts and consisting mainly of α-pinene (24.47-28.56%), sabinene (16.2-18.6%), α-phellandrene (6.3-11.7%) and cis-ocimene (5.28-7.85%). D. tortuosa EOs exhibited remarkable antioxidant activity, as well as interesting variable antifungal activities depending on the dose and fungi strain. The herbicidal activity of EOs showed significant efficacy on the inhibition of germination and seedling growth of all tested herbs. These results suggest that the EOs of Deverra tortuosa represent a valuable source of antioxidant, antifungal and phytotoxic metabolites and could be potential candidates for pest management, contributing to the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Marwa Khammassi
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Oumayma Kochti
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Mouna Souihi
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Sana Khedhri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Ismail Amri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
4
|
Hernik D, Szczepańska E, Ghezzi MC, Brenna E, Włoch A, Pruchnik H, Mularczyk M, Marycz K, Olejniczak T, Boratyński F. Chemo-enzymatic synthesis and biological activity evaluation of propenylbenzene derivatives. Front Microbiol 2023; 14:1223123. [PMID: 37434714 PMCID: PMC10330721 DOI: 10.3389/fmicb.2023.1223123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Propenylbenzenes, including isosafrole, anethole, isoeugenol, and their derivatives, are natural compounds found in essential oils from various plants. Compounds of this group are important and valuable, and are used in the flavour and fragrance industries as well as the pharmaceutical and cosmetic industries. The aim of this study was to develop an efficient process for synthesising oxygenated derivatives of these compounds and evaluate their potential biological activities. In this paper, we propose a two-step chemo-enzymatic method. The first step involves the synthesis of corresponding diols 1b-5b from propenylbenzenes 1a-5avia lipase catalysed epoxidation followed by epoxide hydrolysis. The second step involves the microbial oxidation of a diasteroisomeric mixture of diols 1b-5b to yield the corresponding hydroxy ketones 1c-4c, which in this study was performed on a preparative scale using Dietzia sp. DSM44016, Rhodococcus erythropolis DSM44534, R. erythropolis PCM2150, and Rhodococcus ruber PCM2166. Application of scaled-up processes allowed to obtain hydroxy ketones 1-4c with the following yield range 36-62.5%. The propenylbenzene derivatives thus obtained and the starting compounds were tested for various biological activities, including antimicrobial, antioxidant, haemolytic, and anticancer activities, and their impact on membrane fluidity. Fungistatic activity assay against selected strains of Candida albicans results in MIC50 value varied from 37 to 124 μg/mL for compounds 1a, 3a-c, 4a,b, and 5a,b. The highest antiradical activity was shown by propenylbenzenes 1-5a with a double bond in their structure with EC50 value ranged from 19 to 31 μg/mL. Haemolytic activity assay showed no cytotoxicity of the tested compounds on human RBCs whereas, compounds 2b-4b and 2c-4c affected the fluidity of the RBCs membrane. The tested compounds depending on their concentration showed different antiproliferative activity against HepG2, Caco-2, and MG63. The results indicate the potential utility of these compounds as fungistatics, antioxidants, and proliferation inhibitors of selected cell lines.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Maria Chiara Ghezzi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Malwina Mularczyk
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Gach J, Grzelczyk J, Strzała T, Boratyński F, Olejniczak T. Microbial Metabolites of 3- n-butylphthalide as Monoamine Oxidase A Inhibitors. Int J Mol Sci 2023; 24:10605. [PMID: 37445788 DOI: 10.3390/ijms241310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Novel compounds with antidepressant activity via monoamine oxidase inhibition are being sought. Among these, derivatives of 3-n-butylphthalide, a neuroprotective lactone from Apiaceae plants, may be prominent candidates. This study aimed to obtain the oxidation products of 3-n-butylphthalide and screen them regarding their activity against the monoamine oxidase A (MAO-A) isoform. Such activity of these compounds has not been previously tested. To obtain the metabolites, we used fungi as biocatalysts because of their high oxidative capacity. Overall, 37 strains were used, among which Penicillium and Botrytis spp. were the most efficient, leading to the obtaining of three main products: 3-n-butyl-10-hydroxyphthalide, 3-n-butylphthalide-11-oic acid, and 3-n-butyl-11-hydroxyphthalide, with a total yield of 0.38-0.82 g per g of the substrate, depending on the biocatalyst used. The precursor-3-n-butylphthalide and abovementioned metabolites inhibited the MAO-A enzyme; the most active was the carboxylic acid derivative of the lactone with inhibitory constant (Ki) < 0.001 µmol/L. The in silico prediction of the drug-likeness of the metabolites matches the assumptions of Lipinski, Ghose, Veber, Egan, and Muegge. All the compounds are within the optimal range for the lipophilicity value, which is connected to adequate permeability and solubility.
Collapse
Affiliation(s)
- Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-924 Łódź, Poland
| | - Tomasz Strzała
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
6
|
Krężel P, Olejniczak T, Tołoczko A, Gach J, Weselski M, Bronisz R. Synergic Effect of Phthalide Lactones and Fluconazole and Its New Analogues as a Factor Limiting the Use of Azole Drugs against Candidiasis. Antibiotics (Basel) 2022; 11:1500. [PMID: 36358155 PMCID: PMC9686652 DOI: 10.3390/antibiotics11111500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
The resistance of Candida albicans and other pathogenic yeasts to azole antifungal drugs has increased rapidly in recent years and is a significant problem in clinical therapy. The current state of pharmacological knowledge precludes the withdrawal of azole drugs, as no other active substances have yet been developed that could effectively replace them. Therefore, one of the anti-yeast strategies may be therapies that can rely on the synergistic action of natural compounds and azoles, limiting the use of azole drugs against candidiasis. Synergy assays performed in vitro were used to assess drug interactions Fractional Inhibitory Concentration Index. The synergistic effect of fluconazole (1) and three synthetic lactones identical to those naturally occurring in celery plants-3-n-butylphthalide (2), 3-n-butylidenephthalide (3), 3-n-butyl-4,5,6,7-tetrahydrophthalide (4)-against Candida albicans ATCC 10231, C. albicans ATCC 2091, and C. guilliermondii KKP 3390 was compared with the performance of the individual compounds separately. MIC90 (the amount of fungistatic substance (in µg/mL) inhibiting yeast growth by 90%) was determined as 5.96-6.25 µg/mL for fluconazole (1) and 92-150 µg/mL for lactones 2-4. With the simultaneous administration of fluconazole (1) and one of the lactones 2-4, it was found that they act synergistically, and to achieve the same effect it is sufficient to use 0.58-6.73 µg/mL fluconazole (1) and 1.26-20.18 µg/mL of lactones 2-4. As fluconazole and phthalide lactones show synergy, 11 new fluconazole analogues with lower toxicity and lower inhibitory activity for CYP2C19, CYP1A2, and CYP2C9, were designed after in silico testing. The lipophilicity was also analyzed. A three-carbon alcohol with two rings was preserved. In all compounds 5-15, the 1,2,4-triazole rings were replaced with 1,2,3-triazole or tetrazole rings. The hydroxyl group was free or esterified with phenylacetic acid or thiophene-2-carboxylic acid chlorides or with adipic acid. In structures 11 and 12 the hydroxyl group was replaced with the fragment -CH2Cl or = CH2. Additionally, the difluorophenyl ring was replaced with unsubstituted phenyl. The structures of the obtained compounds were determined by 1H NMR, and 13C NMR spectroscopy. Molecular masses were established by GC-MS or elemental analysis. The MIC50 and MIC90 of all compounds 1-15 were determined against Candida albicans ATCC 10231, C. albicans ATCC 2091, AM 38/20, C. guilliermondii KKP 3390, and C. zeylanoides KKP 3528. The MIC50 values for the newly prepared compounds ranged from 38.45 to 260.81 µg/mL. The 90% inhibitory dose was at least twice as high. Large differences in the effect of fluconazole analogues 5-15 on individual strains were observed. A synergistic effect on three strains-Candida albicans ATCC 10231, C. albicans ATCC 2091, C. guilliermondii KKP 339-was observed. Fractional inhibitory concentrations FIC50 and FIC90 were tested for the most active lactone, 3-n-butylphthalide, and seven fluconazole analogues. The strongest synergistic effect was observed for the strain C. albicans ATCC 10231, FIC 0.04-0.48. The growth inhibitory amount of azole is from 25 to 55 µg/mL and from 3.13 to 25.3 µg/mL for 3-n-butylphthalide. Based on biological research, the influence of the structure on the fungistatic activity and the synergistic effect were determined.
Collapse
Affiliation(s)
- Piotr Krężel
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Gach
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|