1
|
Krasaesin A, Pinijsuwan S, Boonruang C, Sriwattanapong K, Porntaveetus T, Osathanon T, Watanabe S, Jongwannasiri C, Manaspon C. Nitrided Ti-6Al-4V: A Catalyst for Increase Mineralization and Osteogenic Marker Expression. J Biomed Mater Res A 2025; 113:e37853. [PMID: 39709595 DOI: 10.1002/jbm.a.37853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N2) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS). TiN-Ti64 demonstrated superior hydrophilicity compared with Ti64. TiN-Ti64 exhibited higher surface hardness than the original surface. The biological responses of primary human alveolar bone cells (hAVs) were observed on the TiN-Ti64, revealing greater activation of cell adhesion and spreading compared with Ti64 and the control group (glass coverslip). Moreover, the TiN-Ti64 significantly promoted cell proliferation compared with Ti64 and tissue culture plates. The mineralization of hAVs on the TiN-Ti64 showed a significant increase, almost 20% greater than that of Ti64. Furthermore, a significant upregulation of mRNA expression for osteogenic differentiation marker genes, including BMP2, OCN, OPN, and RUNX2, was observed in TiN-Ti64 compared with other conditions. In addition, the TiN-Ti64 exhibited antibiofilm activity against Streptococcus aureus. In conclusion, the TiN-Ti64, modified with the PBII technique utilizing a mixture of N2 and Ar, emerges as a promising alternative for surface modification in dental implant applications.
Collapse
Affiliation(s)
- Annop Krasaesin
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chatdanai Boonruang
- Center of Excellence in Materials Science and Technology, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Shuichi Watanabe
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, Saitama, Japan
| | - Chavin Jongwannasiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Staehlke S, Brief J, Senz V, Eickner T, Nebe JB. Optimized Gingiva Cell Behavior on Dental Zirconia as a Result of Atmospheric Argon Plasma Activation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4203. [PMID: 37374388 DOI: 10.3390/ma16124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Several physico-chemical modifications have been developed to improve cell contact with prosthetic oral implant surfaces. The activation with non-thermal plasmas was one option. Previous studies found that gingiva fibroblasts on laser-microstructured ceramics were hindered in their migration into cavities. However, after argon (Ar) plasma activation, the cells concentrated in and around the niches. The change in surface properties of zirconia and, subsequently, the effect on cell behavior is unclear. In this study, polished zirconia discs were activated by atmospheric pressure Ar plasma using the kINPen®09 jet for 1 min. Surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and water contact angle. In vitro studies with human gingival fibroblasts (HGF-1) focused on spreading, actin cytoskeleton organization, and calcium ion signaling within 24 h. After Ar plasma activation, surfaces were more hydrophilic. XPS revealed decreased carbon and increased oxygen, zirconia, and yttrium content after Ar plasma. The Ar plasma activation boosted the spreading (2 h), and HGF-1 cells formed strong actin filaments with pronounced lamellipodia. Interestingly, the cells' calcium ion signaling was also promoted. Therefore, argon plasma activation of zirconia seems to be a valuable tool to bioactivate the surface for optimal surface occupation by cells and active cell signaling.
Collapse
Affiliation(s)
- Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jakob Brief
- VITA Zahnfabrik H. Rauter GmbH & Co. KG, 79713 Bad Säckingen, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - J Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
- Department Science and Technology of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
3
|
Żywicka A, Ciecholewska-Juśko D, Charęza M, Drozd R, Sobolewski P, Junka A, Gorgieva S, El Fray M, Fijałkowski K. Argon plasma-modified bacterial cellulose filters for protection against respiratory pathogens. Carbohydr Polym 2023; 302:120322. [PMID: 36604039 DOI: 10.1016/j.carbpol.2022.120322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
In this work, we present novel, sustainable filters based on bacterial cellulose (BC) functionalized with low-pressure argon plasma (LPP-Ar). The "green" production process involved BC biosynthesis by Komagataeibacter xylinus, followed by simple purification, homogenization, lyophilization, and finally LPP-Ar treatment. The obtained LPP-Ar-functionalized BC-based material (LPP-Ar-BC-bM) showed excellent antimicrobial and antiviral properties against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, and an enveloped bacteriophage phage Φ6, with no cytotoxicity versus murine fibroblasts in vitro. Further, filters consisting of three layers of LPP-Ar-BC-bM had >99 % bacterial and viral filtration efficiency, while maintaining sufficiently low airflow resistance (6 mbar at an airflow of 95 L/min). Finally, as a proof-of-concept, we were able to prepare 80 masks with LPP-Ar-BC-bM filter and ~85 % of volunteer medical staff assessed them as "good" or "very good" in terms of comfort. We conclude that our novel sustainable, biobased, biodegradable filters are suitable for respiratory personal protective equipment (PPE), such as surgical masks and respirators.
Collapse
Affiliation(s)
- Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Magdalena Charęza
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| |
Collapse
|
4
|
D. Awad G, D. Awad I, K. Khalaf M, L. Alshami M. In vitro study of the antibacterial effect of plasma surface treatment using Argon gas on orthodontic stainless steel brackets against Streptococcus mutans and Lactobacillus acidophilus. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Orthodontic treatment improves dental aesthetics. However, the prolonged duration of treatment and patient's oral hygiene results in more significant biofilm buildup and boosting concentrations of acidogenic bacteria, resulting in enamel demineralization. Plasma treatment technology has developed an interest in enhancing appliances' surface properties. The present study aimed to investigate cytotoxicity and antibacterial activity represented by anti-adhesion and anti-biofilm formation of Argon plasma treatment on orthodontic brackets against Streptococcus mutans and Lactobacillus acidophilus and evaluation the effect of change in plasma exposure duration on these properties in vitro. The study included three groups, group 1: untreated stainless steel brackets, group 2: brackets treated for 15 min, and group 3: brackets treated for 30 min. S.mutans and L.acidophilus were isolated from patients undergoing fixed orthodontic treatment. Microbiological tests included adhesion assay using plate counting method and biofilm formation assay using ELISA plate reader. S. mutans& L. acidophilus were cultivated in three groups, and their adherence and biofilm formation were measured and compared. The biocompatibility of treated stainless steel brackets was evaluated by MTT assay. Results showed that groups 2 & 3 had better anti-adhesion and anti-biofilm activity when compared with group 1, with a significant difference between group 1 &group 3, in which group 3 recorded the lowest biofilm formation and the highest anti- anti-A adhesion activity. MTT showed that groups 2 and 3 exhibited more than 80% cell viability after 24, 48, and 72 hours. Plasma surface treatment of metal brackets possesses antibacterial activity against S.mutans and L.acidophilus; alteration exposure time impacts the development of these properties.
Keywords. Plasma treatment, Argon gas, orthodontic brackets, biofilm, antimicrobial.
Collapse
Affiliation(s)
- Ghufran D. Awad
- Department of Dentistry, Dijlah University College, Baghdad, Iraq
| | - Ihsan D. Awad
- Department of Dentistry, Dijlah University College, Baghdad, Iraq
| | - Mohammed K. Khalaf
- Material Research Directorate, Ministry of Science and Technology, Baghdad, Iraq
| | | |
Collapse
|
5
|
Wagner G, Eggers B, Duddeck D, Kramer FJ, Bourauel C, Jepsen S, Deschner J, Nokhbehsaim M. Influence of cold atmospheric plasma on dental implant materials - an in vitro analysis. Clin Oral Investig 2021; 26:2949-2963. [PMID: 34907458 PMCID: PMC8898257 DOI: 10.1007/s00784-021-04277-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Background and objectives Alterations in the microenvironment of implant surfaces could influence the cellular crosstalk and adhesion patterns of dental implant materials. Cold plasma has been described to have an influence on cells, tissues, and biomaterials. Hence, the mechanisms of osseointegration may be altered by non-thermal plasma treatment depending on different chemical compositions and surface coatings of the biomaterial. The aim of the present study is to investigate the influence of cold atmospheric plasma (CAP) treatment on implant surfaces and its biological and physicochemical side effects. Materials and methods Dental implant discs from titanium and zirconia with different surface modifications were treated with CAP at various durations. Cell behavior and adhesion patterns of human gingival fibroblast (HGF-1) and osteoblast-like cells (MG-63) were examined using scanning electron microscopy and fluorescence microscopy. Surface chemical characterization was analyzed using energy-dispersive X-ray spectroscopy (EDS). Quantitative analysis of cell adhesion, proliferation, and extracellular matrix formation was conducted including real-time PCR. Results CAP did not affect the elemental composition of different dental implant materials. Additionally, markers for cell proliferation, extracellular matrix formation, and cell adhesion were differently regulated depending on the application time of CAP treatment in MG-63 cells and gingival fibroblasts. Conclusions CAP application is beneficial for dental implant materials to allow for faster proliferation and adhesion of cells from the surrounding tissue on both titanium and zirconia implant surfaces with different surface properties. Clinical relevance The healing capacity provided through CAP treatment could enhance osseointegration of dental implants and has the potential to serve as an effective treatment option in periimplantitis therapy.
Collapse
Affiliation(s)
- Gunar Wagner
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxilo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Benedikt Eggers
- Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Dirk Duddeck
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, University Charité Berlin, 14197, Berlin, Germany.,Research Department, CleanImplant Foundation, 10117, Berlin, Germany
| | - Franz-Josef Kramer
- Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany.,Department of Cranio-Maxillofacial Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Christoph Bourauel
- Department of Oral Technology, School of Dentistry, University of Bonn, 53111, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxilo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131, Mainz, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| |
Collapse
|