1
|
Saraswat A, Sharma U, Gandotra A, Wasan L, Artham S, Maitra A, Singh B. Pred-AHCP: Robust Feature Selection-Enabled Sequence-Specific Prediction of Anti-Hepatitis C Peptides via Machine Learning. J Chem Inf Model 2024; 64:9111-9124. [PMID: 39505690 DOI: 10.1021/acs.jcim.4c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Every year, an estimated 1.5 million people worldwide contract Hepatitis C, a significant contributor to liver problems. Although many studies have explored machine learning's potential to predict antiviral peptides, very few have addressed the problem of predicting peptides against specific viruses such as Hepatitis C. In this study, we demonstrate the application and fine-tuning of machine learning (ML) algorithms to predict peptides that are effective against Hepatitis C virus (HCV). We developed a fine-tuned and explainable ML model that harnesses the amino acid sequence of a peptide to predict its anti-hepatitis C potential. Specifically, features were computed based on sequence and physicochemical properties. The feature selection was performed using a combined strategy of mutual information and variance inflation factor. This facilitated the removal of redundant and multicollinear features, enhancing the model's generalizability in predicting anti-hepatitis C peptides (AHCPs). The model using the random forest algorithm produced the best performance with an accuracy of about 92%. The feature analysis highlights that the distributions of hydrophobicity, polarizability, coil-forming residues, frequency of glycine residues and the existence of dipeptide motifs VL, LV, and CC emerged as the key predictors for identifying AHCPs targeting different components of HCV. The developed model can be accessed through the Pred-AHCP web server, provided at http://tinyurl.com/web-Pred-AHCP. This resource facilitates the prediction and re-engineering of AHCPs for designing peptide-based therapeutics while also proposing an exploration of similar strategies for designing peptide inhibitors effective against other viruses. The developed ML model can also be used for validating peptide sequences generated using generative artificial intelligence methods for further optimization.
Collapse
Affiliation(s)
- Akash Saraswat
- Department of Applied Sciences, School of Engineering and Technology, BML Munjal University, Gurugram, Haryana 122413, India
| | - Utsav Sharma
- Department of Computer Science and Engineering, School of Engineering and Technology, BML Munjal University, Gurugram, Haryana 122413, India
| | - Aryan Gandotra
- Department of Computer Science and Engineering, School of Engineering and Technology, BML Munjal University, Gurugram, Haryana 122413, India
| | - Lakshit Wasan
- Department of Computer Science and Engineering, School of Engineering and Technology, BML Munjal University, Gurugram, Haryana 122413, India
| | - Sainithin Artham
- Department of Computer Science and Engineering, School of Engineering and Technology, BML Munjal University, Gurugram, Haryana 122413, India
| | - Arijit Maitra
- Department of Applied Sciences, School of Engineering and Technology, BML Munjal University, Gurugram, Haryana 122413, India
| | - Bipin Singh
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana 500043, India
| |
Collapse
|
2
|
Dhanabalan AK, Devadasan V, Haribabu J, Krishnasamy G. Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1. Mol Divers 2024:10.1007/s11030-024-10997-4. [PMID: 39417979 DOI: 10.1007/s11030-024-10997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapó, Chile
- Chennai Institute of Technology (CIT), Chennai, Tamil Nadu, 600069, India
| | - Gunasekaran Krishnasamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
3
|
de Santiago-Silva KM, Camargo PG, Carvalho Constant LE, Costa SDS, Frensel GB, Allonso D, Nakazato G, Lima CHDS, Bispo MDLF. Molecular modelling studies and in vitro enzymatic assays identified A 4-(nitrobenzyl)guanidine derivative as inhibitor of SARS-CoV-2 Mpro. Sci Rep 2024; 14:8620. [PMID: 38616188 PMCID: PMC11016540 DOI: 10.1038/s41598-024-59292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
Scientists and researchers have been searching for drugs targeting the main protease (Mpro) of SARS-CoV-2, which is crucial for virus replication. This study employed a virtual screening based on molecular docking to identify benzoylguanidines from an in-house chemical library that can inhibit Mpro on the active site and three allosteric sites. Molecular docking was performed on the LaSMMed Chemical Library using 88 benzoylguanidine compounds. Based on their RMSD values and conserved pose, three potential inhibitors (BZG1, BZG2, and BZG3) were selected. These results indicate that BZG1 and BZG3 may bind to the active site, while BZG2 may bind to allosteric sites. Molecular dynamics data suggest that BZG2 selectively targets allosteric site 3. In vitro tests were performed to measure the proteolytic activity of rMpro. The tests showed that BZG2 has uncompetitive inhibitory activity, with an IC50 value of 77 µM. These findings suggest that benzoylguanidines possess potential as Mpro inhibitors and pave the way towards combating SARS-Cov-2 effectively.
Collapse
Affiliation(s)
- Kaio Maciel de Santiago-Silva
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Priscila Goes Camargo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Larissa Esteves Carvalho Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Stephany da Silva Costa
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Giovanna Barbosa Frensel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Camilo Henrique da Silva Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
4
|
Liu J, Xu L, Guo W, Li Z, Khan MKH, Ge W, Patterson TA, Hong H. Developing a SARS-CoV-2 main protease binding prediction random forest model for drug repurposing for COVID-19 treatment. Exp Biol Med (Maywood) 2023; 248:1927-1936. [PMID: 37997891 PMCID: PMC10798185 DOI: 10.1177/15353702231209413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic resulted in millions of people becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and close to seven million deaths worldwide. It is essential to further explore and design effective COVID-19 treatment drugs that target the main protease of SARS-CoV-2, a major target for COVID-19 drugs. In this study, machine learning was applied for predicting the SARS-CoV-2 main protease binding of Food and Drug Administration (FDA)-approved drugs to assist in the identification of potential repurposing candidates for COVID-19 treatment. Ligands bound to the SARS-CoV-2 main protease in the Protein Data Bank and compounds experimentally tested in SARS-CoV-2 main protease binding assays in the literature were curated. These chemicals were divided into training (516 chemicals) and testing (360 chemicals) data sets. To identify SARS-CoV-2 main protease binders as potential candidates for repurposing to treat COVID-19, 1188 FDA-approved drugs from the Liver Toxicity Knowledge Base were obtained. A random forest algorithm was used for constructing predictive models based on molecular descriptors calculated using Mold2 software. Model performance was evaluated using 100 iterations of fivefold cross-validations which resulted in 78.8% balanced accuracy. The random forest model that was constructed from the whole training dataset was used to predict SARS-CoV-2 main protease binding on the testing set and the FDA-approved drugs. Model applicability domain and prediction confidence on drugs predicted as the main protease binders discovered 10 FDA-approved drugs as potential candidates for repurposing to treat COVID-19. Our results demonstrate that machine learning is an efficient method for drug repurposing and, thus, may accelerate drug development targeting SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Wenjing Guo
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Zoe Li
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Md Kamrul Hasan Khan
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Weigong Ge
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
5
|
Ashraf FB, Akter S, Mumu SH, Islam MU, Uddin J. Bio-activity prediction of drug candidate compounds targeting SARS-Cov-2 using machine learning approaches. PLoS One 2023; 18:e0288053. [PMID: 37669264 PMCID: PMC10479925 DOI: 10.1371/journal.pone.0288053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 09/07/2023] Open
Abstract
The SARS-CoV-2 3CLpro protein is one of the key therapeutic targets of interest for COVID-19 due to its critical role in viral replication, various high-quality protein crystal structures, and as a basis for computationally screening for compounds with improved inhibitory activity, bioavailability, and ADMETox properties. The ChEMBL and PubChem database contains experimental data from screening small molecules against SARS-CoV-2 3CLpro, which expands the opportunity to learn the pattern and design a computational model that can predict the potency of any drug compound against coronavirus before in-vitro and in-vivo testing. In this study, Utilizing several descriptors, we evaluated 27 machine learning classifiers. We also developed a neural network model that can correctly identify bioactive and inactive chemicals with 91% accuracy, on CheMBL data and 93% accuracy on combined data on both CheMBL and Pubchem. The F1-score for inactive and active compounds was 93% and 94%, respectively. SHAP (SHapley Additive exPlanations) on XGB classifier to find important fingerprints from the PaDEL descriptors for this task. The results indicated that the PaDEL descriptors were effective in predicting bioactivity, the proposed neural network design was efficient, and the Explanatory factor through SHAP correctly identified the important fingertips. In addition, we validated the effectiveness of our proposed model using a large dataset encompassing over 100,000 molecules. This research employed various molecular descriptors to discover the optimal one for this task. To evaluate the effectiveness of these possible medications against SARS-CoV-2, more in-vitro and in-vivo research is required.
Collapse
Affiliation(s)
- Faisal Bin Ashraf
- Department of Computer Science and Engineering, Brac University, Dhaka, Bangladesh
- Department of Computer Science and Engineering, University of California, Riverside, California, United States of America
| | - Sanjida Akter
- Department of Cell Molecular and Developmental Biology, University of California, Riverside, California, United States of America
| | - Sumona Hoque Mumu
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
| |
Collapse
|
6
|
Ferdous N, Reza MN, Hossain MU, Mahmud S, Napis S, Chowdhury K, Mohiuddin AKM. Mpropred: A machine learning (ML) driven Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists. PLoS One 2023; 18:e0287179. [PMID: 37352252 PMCID: PMC10289339 DOI: 10.1371/journal.pone.0287179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged in 2019 and still requiring treatments with fast clinical translatability. Frequent occurrence of mutations in spike glycoprotein of SARS-CoV-2 led the consideration of an alternative therapeutic target to combat the ongoing pandemic. The main protease (Mpro) is such an attractive drug target due to its importance in maturating several polyproteins during the replication process. In the present study, we used a classification structure-activity relationship (CSAR) model to find substructures that leads to to anti-Mpro activities among 758 non-redundant compounds. A set of 12 fingerprints were used to describe Mpro inhibitors, and the random forest approach was used to build prediction models from 100 distinct data splits. The data set's modelability (MODI index) was found to be robust, with a value of 0.79 above the 0.65 threshold. The accuracy (89%), sensitivity (89%), specificity (73%), and Matthews correlation coefficient (79%) used to calculate the prediction performance, was also found to be statistically robust. An extensive analysis of the top significant descriptors unveiled the significance of methyl side chains, aromatic ring and halogen groups for Mpro inhibition. Finally, the predictive model is made publicly accessible as a web-app named Mpropred in order to allow users to predict the bioactivity of compounds against SARS-CoV-2 Mpro. Later, CMNPD, a marine compound database was screened by our app to predict bioactivity of all the compounds and results revealed significant correlation with their binding affinity to Mpro. Molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) analysis showed improved properties of the complexes. Thus, the knowledge and web-app shown herein can be used to develop more effective and specific inhibitors against the SARS-CoV-2 Mpro. The web-app can be accessed from https://share.streamlit.io/nadimfrds/mpropred/Mpropred_app.py.
Collapse
Affiliation(s)
- Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mohammad Uzzal Hossain
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Ganakbari, Savar, Dhaka, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Suhami Napis
- Department of Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor D.E., Malaysia
| | - Kamal Chowdhury
- Biology Department, Claflin University, Orangeburg, SC, United States of America
| | - A. K. M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| |
Collapse
|
7
|
Rescifina A. Progress of the "Molecular Informatics" Section in 2022. Int J Mol Sci 2023; 24:ijms24119442. [PMID: 37298393 DOI: 10.3390/ijms24119442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
This is the first Editorial of the "Molecular Informatics" Section (MIS) of the International Journal of Molecular Sciences (IJMS), which was created towards the end of 2018 (the first article was submitted on 27 September 2018) and has experienced significant growth from 2018 to now [...].
Collapse
Affiliation(s)
- Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
8
|
Saldivar-Espinoza B, Macip G, Garcia-Segura P, Mestres-Truyol J, Puigbò P, Cereto-Massagué A, Pujadas G, Garcia-Vallve S. Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks. Int J Mol Sci 2022; 23:ijms232314683. [PMID: 36499005 PMCID: PMC9736107 DOI: 10.3390/ijms232314683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Predicting SARS-CoV-2 mutations is difficult, but predicting recurrent mutations driven by the host, such as those caused by host deaminases, is feasible. We used machine learning to predict which positions from the SARS-CoV-2 genome will hold a recurrent mutation and which mutations will be the most recurrent. We used data from April 2021 that we separated into three sets: a training set, a validation set, and an independent test set. For the test set, we obtained a specificity value of 0.69, a sensitivity value of 0.79, and an Area Under the Curve (AUC) of 0.8, showing that the prediction of recurrent SARS-CoV-2 mutations is feasible. Subsequently, we compared our predictions with updated data from January 2022, showing that some of the false positives in our prediction model become true positives later on. The most important variables detected by the model's Shapley Additive exPlanation (SHAP) are the nucleotide that mutates and RNA reactivity. This is consistent with the SARS-CoV-2 mutational bias pattern and the preference of some host deaminases for specific sequences and RNA secondary structures. We extend our investigation by analyzing the mutations from the variants of concern Alpha, Beta, Delta, Gamma, and Omicron. Finally, we analyzed amino acid changes by looking at the predicted recurrent mutations in the M-pro and spike proteins.
Collapse
Affiliation(s)
- Bryan Saldivar-Espinoza
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guillem Macip
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Garcia-Segura
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Júlia Mestres-Truyol
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Spain
- Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, 43204 Reus, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence:
| |
Collapse
|
9
|
Adams J, Agyenkwa-Mawuli K, Agyapong O, Wilson MD, Kwofie SK. EBOLApred: A machine learning-based web application for predicting cell entry inhibitors of the Ebola virus. Comput Biol Chem 2022; 101:107766. [DOI: 10.1016/j.compbiolchem.2022.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
|
10
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Wieczór M, Genna V, Aranda J, Badia RM, Gelpí JL, Gapsys V, de Groot BL, Lindahl E, Municoy M, Hospital A, Orozco M. Pre-exascale HPC approaches for molecular dynamics simulations. Covid-19 research: A use case. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 13:e1622. [PMID: 35935573 PMCID: PMC9347456 DOI: 10.1002/wcms.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excellence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics. This article is categorized under:Data Science > Computer Algorithms and ProgrammingData Science > Databases and Expert SystemsMolecular and Statistical Mechanics > Molecular Dynamics and Monte-Carlo Methods.
Collapse
Affiliation(s)
- Miłosz Wieczór
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Department of Physical ChemistryGdansk University of TechnologyGdańskPoland
| | - Vito Genna
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - Josep Lluís Gelpí
- Barcelona Supercomputing CenterBarcelonaSpain
- Department of Biochemistry and BiomedicineUniversity of BarcelonaBarcelonaSpain
| | - Vytautas Gapsys
- Max Planck Institute for Multidisciplinary SciencesComputational Biomolecular Dynamics GroupGoettingenGermany
| | - Bert L. de Groot
- Max Planck Institute for Multidisciplinary SciencesComputational Biomolecular Dynamics GroupGoettingenGermany
| | - Erik Lindahl
- Department of Applied PhysicsSwedish e‐Science Research Center, KTH Royal Institute of TechnologyStockholmSweden
- Department of Biochemistry and Biophysics, Science for Life LaboratoryStockholm UniversityStockholmSweden
| | | | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Department of Biochemistry and BiomedicineUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
12
|
Floresta G, Zagni C, Gentile D, Patamia V, Rescifina A. Artificial Intelligence Technologies for COVID-19 De Novo Drug Design. Int J Mol Sci 2022; 23:ijms23063261. [PMID: 35328682 PMCID: PMC8949797 DOI: 10.3390/ijms23063261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.
Collapse
|