1
|
Scaccini L, Battisti A, Convertino D, Puppi D, Gagliardi M, Cecchini M, Tonazzini I. Glycerol-blended chitosan membranes with directional micro-grooves and reduced stiffness improve Schwann cell wound healing. Biomed Mater 2024; 19:065005. [PMID: 39208844 DOI: 10.1088/1748-605x/ad7562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Regenerative medicine is continuously looking for new natural, biocompatible and possibly biodegradable materials, but also mechanically compliant. Chitosan is emerging as a promising FDA-approved biopolymer for tissue engineering, however, its exploitation in regenerative devices is limited by its brittleness and can be further improved, for example by blending it with other materials or by tuning its superficial microstructure. Here, we developed membranes made of chitosan (Chi) and glycerol, by solvent casting, and micro-patterned them with directional geometries having different levels of axial symmetry. These membranes were characterized by light microscopies, atomic force microscopy (AFM), by thermal, mechanical and degradation assays, and also testedin vitroas scaffolds with Schwann cells (SCs). The glycerol-blended Chi membranes are optimized in terms of mechanical properties, and present a physiological-grade Young's modulus (≈0.7 MPa). The directional topographies are effective in directing cell polarization and migration and in particular are highly performant substrates for collective cell migration. Here, we demonstrate that a combination of a soft compliant biomaterial and a topographical micropatterning can improve the integration of these scaffolds with SCs, a fundamental step in the peripheral nerve regeneration process.
Collapse
Affiliation(s)
- L Scaccini
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - A Battisti
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - D Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - D Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa , Via G. Moruzzi 13, 56124 Pisa, Italy
| | - M Gagliardi
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - M Cecchini
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - I Tonazzini
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
2
|
Xu Y, Liu X, Ahmad MA, Ao Q, Yu Y, Shao D, Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration. Mater Today Bio 2024; 27:101125. [PMID: 38979129 PMCID: PMC11228803 DOI: 10.1016/j.mtbio.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Extracellular matrices (ECMs) play a key role in nerve repair and are recognized as the natural source of biomaterials. In parallel to extensively studied tissue-derived ECMs (ts-ECMs), cell-derived ECMs (cd-ECMs) also have the capability to partially recapitulate the complicated regenerative microenvironment of native nerve tissues. Notably, cd-ECMs can avoid the shortcomings of ts-ECMs. Cd-ECMs can be prepared by culturing various cells or even autologous cells in vitro under pathogen-free conditions. And mild decellularization can achieve efficient removal of immunogenic components in cd-ECMs. Moreover, cd-ECMs are more readily customizable to achieve the desired functional properties. These advantages have garnered significant attention for the potential of cd-ECMs in neuroregenerative medicine. As promising biomaterials, cd-ECMs bring new hope for the effective treatment of peripheral nerve injuries. Herein, this review comprehensively examines current knowledge about the functional characteristics of cd-ECMs and their mechanisms of interaction with cells in nerve regeneration, with a particular focus on the preparation, engineering optimization, and scalability of cd-ECMs. The applications of cd-ECMs from distinct cell sources reported in peripheral nerve tissue engineering are highlighted and summarized. Furthermore, current limitations that should be addressed and outlooks related to clinical translation are put forward as well.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianbo Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | | | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, Guangzhou, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
3
|
Li M, Li X, Lv Y, Yan H, Wang XY, He J, Zhou C, Ouyang Y. Chiral MoS 2@BC fibrous membranes selectively promote peripheral nerve regeneration. J Nanobiotechnology 2024; 22:337. [PMID: 38886712 PMCID: PMC11181549 DOI: 10.1186/s12951-024-02493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.
Collapse
Affiliation(s)
- Mengru Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Xiao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Hede Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiang-Yang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China.
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China.
| |
Collapse
|
4
|
Sun Y, Zhang Y, Guo Y, He D, Xu W, Fang W, Zhang C, Zuo Y, Zhang Z. Electrical aligned polyurethane nerve guidance conduit modulates macrophage polarization and facilitates immunoregulatory peripheral nerve regeneration. J Nanobiotechnology 2024; 22:244. [PMID: 38735969 PMCID: PMC11089704 DOI: 10.1186/s12951-024-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yinglong Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yibo Guo
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wanlin Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wei Fang
- MOE Key Laboratory of Low-Grade Energy, Utilization Technologies and Systems, CQU-NUS Renewable, Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China.
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the Novel Multifunctional Nerve Guidance Conduits: From Specific Regenerative Procedures to Motor Function Rebuilding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307805. [PMID: 37750196 DOI: 10.1002/adma.202307805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.
Collapse
Affiliation(s)
- Weixian Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nuozi Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Cong M, Wu X, Zhu L, Gu G, Ding F, Li G, Shi H. Anisotropic microtopography surface of chitosan scaffold regulating skin precursor-derived Schwann cells towards repair phenotype promotes neural regeneration. Regen Biomater 2024; 11:rbae005. [PMID: 38414797 PMCID: PMC10898340 DOI: 10.1093/rb/rbae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
For repairing peripheral nerve and spinal cord defects, biomaterial scaffold-based cell-therapy was emerged as an effective strategy, requiring the positive response of seed cells to biomaterial substrate and environment signals. Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization. However, the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed. Given that, this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells (SKP-SCs). Chitosan-film with different ridge/groove size was fabricated and applied for the SKP-SCs induction. Results indicated that SKP-SCs cultured on 30 μm size microgroove surface showed better oriented alignment phenotype. Induced SKP-SCs presented similar genic phenotype as repair Schwann cells, increasing expression of c-Jun, neural cell adhesion molecule, and neurotrophic receptor p75. Moreover, SKP-SC-secretome was subjected to cytokine array GS67 assay, data indicated the regulation of paracrine phenotype, a panel of cytokines was verified up-regulated at secreted level and gene expression level in induced SKP-SCs. These up-regulated cytokines exhibit a series of promotive neural regeneration functions, including cell survival, cell migration, cell proliferation, angiogenesis, axon growth, and cellular organization etc. through bioinformatics analysis. Furthermore, the effectively polarized SKP-SCs-sourced secretome, promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells, and augmented neurites growth of the cultured motoneurons, as well as boosted axonal regrowth of the axotomy-injured motoneurons. Taken together, SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film, displayed the oriented parallel growth, the transition towards repair Schwann cell genic phenotype, and the enhanced paracrine effect on neural regeneration. This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation, that facilitating to provide promising engineered cell-scaffold in neural injury therapies.
Collapse
Affiliation(s)
- Meng Cong
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Lingjie Zhu
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Guohao Gu
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Haiyan Shi
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Convertino D, Nencioni M, Russo L, Mishra N, Hiltunen VM, Bertilacchi MS, Marchetti L, Giacomelli C, Trincavelli ML, Coletti C. Interaction of graphene and WS 2 with neutrophils and mesenchymal stem cells: implications for peripheral nerve regeneration. NANOSCALE 2024; 16:1792-1806. [PMID: 38175567 DOI: 10.1039/d3nr04927b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Graphene and bidimensional (2D) materials have been widely used in nerve conduits to boost peripheral nerve regeneration. Nevertheless, the experimental and commercial variability in graphene-based materials generates graphene forms with different structures and properties that can trigger entirely diverse biological responses from all the players involved in nerve repair. Herein, we focus on the graphene and tungsten disulfide (WS2) interaction with non-neuronal cell types involved in nerve tissue regeneration. We synthesize highly crystalline graphene and WS2 with scalable techniques such as thermal decomposition and chemical vapor deposition. The materials were able to trigger the activation of a neutrophil human model promoting Neutrophil Extracellular Traps (NETs) production, particularly under basal conditions, although neutrophils were not able to degrade graphene. Of note is that pristine graphene acts as a repellent for the NET adhesion, a beneficial property for nerve conduit long-term applications. Mesenchymal stem cells (MSCs) have been proposed as a promising strategy for nerve regeneration in combination with a conduit. Thus, the interaction of graphene with MSCs was also investigated, and reduced viability was observed only on specific graphene substrates. Overall, the results confirm the possibility of regulating the cell response by varying graphene properties and selecting the most suitable graphene forms.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
| | - Martina Nencioni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Lara Russo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | - Vesa-Matti Hiltunen
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | | | - Laura Marchetti
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy.
| | | | - Camilla Coletti
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| |
Collapse
|
9
|
Convertino D, Trincavelli ML, Giacomelli C, Marchetti L, Coletti C. Graphene-based nanomaterials for peripheral nerve regeneration. Front Bioeng Biotechnol 2023; 11:1306184. [PMID: 38164403 PMCID: PMC10757979 DOI: 10.3389/fbioe.2023.1306184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Emerging nanotechnologies offer numerous opportunities in the field of regenerative medicine and have been widely explored to design novel scaffolds for the regeneration and stimulation of nerve tissue. In this review, we focus on peripheral nerve regeneration. First, we introduce the biomedical problem and the present status of nerve conduits that can be used to guide, fasten and enhance regeneration. Then, we thoroughly discuss graphene as an emerging candidate in nerve tissue engineering, in light of its chemical, tribological and electrical properties. We introduce the graphene forms commonly used as neural interfaces, briefly review their applications, and discuss their potential toxicity. We then focus on the adoption of graphene in peripheral nervous system applications, a research field that has gained in the last years ever-increasing attention. We discuss the potential integration of graphene in guidance conduits, and critically review graphene interaction not only with peripheral neurons, but also with non-neural cells involved in nerve regeneration; indeed, the latter have recently emerged as central players in modulating the immune and inflammatory response and accelerating the growth of new tissue.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
10
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
11
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Khubiev OM, Egorov AR, Kirichuk AA, Khrustalev VN, Tskhovrebov AG, Kritchenkov AS. Chitosan-Based Antibacterial Films for Biomedical and Food Applications. Int J Mol Sci 2023; 24:10738. [PMID: 37445916 DOI: 10.3390/ijms241310738] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Antibacterial chitosan films, versatile and eco-friendly materials, have garnered significant attention in both the food industry and medicine due to their unique properties, including biodegradability, biocompatibility, and antimicrobial activity. This review delves into the various types of chitosan films and their distinct applications. The categories of films discussed span from pure chitosan films to those enhanced with additives such as metal nanoparticles, metal oxide nanoparticles, graphene, fullerene and its derivatives, and plant extracts. Each type of film is examined in terms of its synthesis methods and unique properties, establishing a clear understanding of its potential utility. In the food industry, these films have shown promise in extending shelf life and maintaining food quality. In the medical field, they have been utilized for wound dressings, drug delivery systems, and as antibacterial coatings for medical devices. The review further suggests that the incorporation of different additives can significantly enhance the antibacterial properties of chitosan films. While the potential of antibacterial chitosan films is vast, the review underscores the need for future research focused on optimizing synthesis methods, understanding structure-property relationships, and rigorous evaluation of safety, biocompatibility, and long-term stability in real-world applications.
Collapse
Affiliation(s)
- Omar M Khubiev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R Egorov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A Kirichuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russia
| | - Alexander G Tskhovrebov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Andreii S Kritchenkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| |
Collapse
|
13
|
Zhang Z, Lv Y, Harati J, Song J, Du P, Ou P, Liang J, Wang H, Wang PY. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells. J Funct Biomater 2023; 14:jfb14050238. [PMID: 37233348 DOI: 10.3390/jfb14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanliang Lv
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Du
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyan Ou
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Liang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Mechanotransduction Impairment in Primary Fibroblast Model of Krabbe Disease. Biomedicines 2023; 11:biomedicines11030927. [PMID: 36979906 PMCID: PMC10046230 DOI: 10.3390/biomedicines11030927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Krabbe disease (KD) is a genetic disorder caused by the absence of the galactosylceramidase (GALC) functional enzyme. No cure is currently available. Here, we investigate the mechanotransduction process in primary fibroblasts collected from the twitcher mouse, a natural KD murine model. Thanks to mechanotransduction, cells can sense their environment and convert external mechanical stimuli into biochemical signals that result in intracellular changes. In GALC-deficient fibroblasts, we show that focal adhesions (FAs), the protein clusters necessary to adhere and migrate, are increased, and that single-cell migration and wound healing are impaired. We also investigate the involvement of the autophagic process in this framework. We show a dysregulation in the FA turnover: here, the treatment with the autophagy activator rapamycin boosts cell migration and improves the clearance of FAs in GALC-deficient fibroblasts. We propose mechanosensing impairment as a novel potential pathological mechanism in twitcher fibroblasts, and more in general in Krabbe disease.
Collapse
|
15
|
Yuan B, Zheng X, Wu ML, Yang Y, Chen JW, Gao HC, Liu J. Platelet-Rich Plasma Gel-Loaded Collagen/Chitosan Composite Film Accelerated Rat Sciatic Nerve Injury Repair. ACS OMEGA 2023; 8:2931-2941. [PMID: 36713745 PMCID: PMC9878625 DOI: 10.1021/acsomega.2c05351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Peripheral nerve injury (PNI) is a common clinical disease caused by severe limb trauma, congenital malformations, and tumor resection, which may lead to significant functional impairment and permanent disability. Nerve conduit as a method for treating peripheral nerve injury shows good application prospects. In this work, the COL/CS composite films with different mass ratios of 1:0, 1:1, and 1:3 were fabricated by combining physical doping. Physicochemical characterization results showed that the COL/CS composite films possessed good swelling properties, ideal mechanical properties, degradability and suitable hydrophilicity, which could meet the requirements of nerve tissue engineering. In vitro cell experiments showed that the loading of platelet-rich plasma (PRP) gel on the surface of COL/CS composite films could significantly improve the biocompatibility of films and promote the proliferation of Schwann cells. In addition, a rat model of sciatic nerve defect was constructed to evaluate the effect of COL/CS composite films on peripheral nerve repair and the results showed that COL/CS composite films loaded with PRP gel could promote nerve regeneration and functional recovery in rats with sciatic nerve injury, indicating that the combination of PRP gel with the COL/CS composite film would be a potential approach for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Bo Yuan
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Xu Zheng
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Mo-Li Wu
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Yang Yang
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Jin-wei Chen
- South
China University of Technology School of Medicine, Guangzhou510006, China
| | - Hui-Chang Gao
- South
China University of Technology School of Medicine, Guangzhou510006, China
| | - Jia Liu
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
- South
China University of Technology School of Medicine, Guangzhou510006, China
| |
Collapse
|
16
|
Yu T, Ao Q, Ao T, Ahmad MA, Wang A, Xu Y, Zhang Z, Zhou Q. Preparation and assessment of an optimized multichannel acellular nerve allograft for peripheral nerve regeneration. Bioeng Transl Med 2022. [DOI: 10.1002/btm2.10435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tianhao Yu
- The VIP Department, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| | - Qiang Ao
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education China Medical University Shenyang China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Tianrang Ao
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | | | - Aijun Wang
- Department of Neurological Surgery University of California Davis Sacramento California USA
| | - Yingxi Xu
- Department of Clinical Nutrition Shengjing Hospital of China Medical University Shenyang China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases Shenyang China
| |
Collapse
|
17
|
Manganas P, Kavatzikidou P, Kordas A, Babaliari E, Stratakis E, Ranella A. The role of mechanobiology on the Schwann cell response: A tissue engineering perspective. Front Cell Neurosci 2022; 16:948454. [PMID: 36035260 PMCID: PMC9399718 DOI: 10.3389/fncel.2022.948454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS), do not only form myelin sheaths thereby insulating the electrical signal propagated by the axons, but also play an essential role in the regeneration of injured axons. SCs are inextricably connected with their extracellular environment and the mechanical stimuli that are received determine their response during development, myelination and injuries. To this end, the mechanobiological response of SCs is being actively researched, as it can determine the suitability of fabricated scaffolds for tissue engineering and regenerative medicine applications. There is growing evidence that SCs are sensitive to changes in the mechanical properties of the surrounding environment (such as the type of material, its elasticity and stiffness), different topographical features provided by the environment, as well as shear stress. In this review, we explore how different mechanical stimuli affect SC behaviour and highlight the importance of exploring many different avenues when designing scaffolds for the repair of PNS injuries.
Collapse
Affiliation(s)
- Phanee Manganas
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Paraskevi Kavatzikidou
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Antonis Kordas
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Eleftheria Babaliari
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Emmanuel Stratakis
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Anthi Ranella
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- *Correspondence: Anthi Ranella
| |
Collapse
|
18
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
19
|
Kang NU, Lee SJ, Gwak SJ. Fabrication Techniques of Nerve Guidance Conduits for Nerve Regeneration. Yonsei Med J 2022; 63:114-123. [PMID: 35083896 PMCID: PMC8819402 DOI: 10.3349/ymj.2022.63.2.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022] Open
Abstract
Neuronal loss and axonal degeneration after spinal cord injury or peripheral injury result in the loss of sensory and motor functions. Nerve regeneration is a complicated and medical challenge that requires suitable guides to bridge nerve injury gaps and restore nerve function. Due to the hostility of the microenvironment in the lesion, multiple conditions should be fulfilled to achieve improved functional recovery. Many nerve conduits have been fabricated using various natural and synthetic polymers. The design and material of the nerve guide conduits were carefully reviewed. A detailed review was conducted on the fabrication method of the nerve guide conduit for nerve regeneration. The typical fabrication methods used to fabricate nerve conduits are dip coating, solvent casting, micropatterning, electrospinning, and additive manufacturing. The advantages and disadvantages of the fabrication methods were reported, and research to overcome these limitations was reviewed. Extensive reviews have focused on the biological functions and in vivo performance of polymeric nerve conduits. In this paper, we emphasize the fabrication method of nerve conduits by polymers and their properties. By learning from the existing candidates, we can advance the strategies for designing novel polymeric systems with better properties for nerve regeneration.
Collapse
Affiliation(s)
- Nae-Un Kang
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, Iksan, Korea
| | - Seung-Jae Lee
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, Iksan, Korea.
| | - So-Jung Gwak
- Department of Chemical Engineering, College of Engineering, Wonkwang University, Iksan, Korea.
| |
Collapse
|