1
|
Thomas BL, Montero-Melendez T, Oggero S, Kaneva MK, Chambers D, Pinto AL, Nerviani A, Lucchesi D, Austin-Williams S, Hussain MT, Pitzalis C, Allen B, Malcangio M, Dell'Accio F, Norling LV, Perretti M. Molecular Determinants of Neutrophil Extracellular Vesicles That Drive Cartilage Regeneration in Inflammatory Arthritis. Arthritis Rheumatol 2024. [PMID: 39041647 DOI: 10.1002/art.42958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE This study was undertaken to establish the potential therapeutic profile of neutrophil-derived extracellular vesicles (EVs) in experimental inflammatory arthritis and associate pharmacological activity with specific EV components, focusing on microRNAs. METHODS Neutrophil EVs were administered intra-articularly through a prophylactic or therapeutic protocol to male C57BL/6 mice undergoing serum-transfer-induced inflammatory arthritis. Transcriptomic analysis of knees was performed on joints following EV administration, naive and arthritic mice (untreated; n = 4/group) and EV-treated diseased mice (intra-articular administration) with contralateral (vehicle-treated; n = 8/group). Comparison of healthy donor and patients with rheumatoid arthritis (RA) neutrophil EVs was performed. RESULTS EVs afforded cartilage protection with an increase in collagen-II and reduced collagen-X expression within the joint. To gain mechanistic insights, RNA sequencing of the arthritic joints was conducted. A total of 5,231 genes were differentially expressed (P < 0.05), with 257 unique to EV treatment. EVs affected key regenerative pathways involved in joint development, including Wnt and Notch signaling. This wealth of genomic alteration prompted to identify microRNAs in EVs, 10 of which are associated with RA. As a proof of concept, we focused on miR-455-3p, which was detected in both healthy donor and RA EVs. EV addition to chondrocyte cultures elevated miR-455-3p and exerted anticatabolic effects upon interleukin-1β stimulation; these effects were blocked by actinomycin or miR-455-3p antagomir. CONCLUSION Neutrophils from patients with RA yielded EVs with composition, efficacy, and miR-455-3p content similar to those of healthy volunteers, suggesting that neutrophil EVs could be developed as an autologous treatment to protect and repair joint tissue of patients affected by inflammatory arthritides.
Collapse
Affiliation(s)
| | | | - Silvia Oggero
- Queen Mary University of London and Kings College London, Guys' Campus, London, United Kingdom
| | | | - David Chambers
- Kings College London, Guys' Campus, London, United Kingdom
| | - Andreia L Pinto
- Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Alessandra Nerviani
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research Centre, London, United Kingdom
| | | | | | | | - Costantino Pitzalis
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research Centre, London, United Kingdom
| | - Benjamin Allen
- Kings College London, Guys' Campus, London, United Kingdom
| | | | - Francesco Dell'Accio
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research Centre, London, United Kingdom
| | | | | |
Collapse
|
2
|
Zhang X, Ma S, Huebner JL, Naz SI, Alnemer N, Soderblom EJ, Aliferis C, Kraus VB. Immune system-related plasma extracellular vesicles in healthy aging. Front Immunol 2024; 15:1355380. [PMID: 38633262 PMCID: PMC11021711 DOI: 10.3389/fimmu.2024.1355380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives To identify age-related plasma extracellular vehicle (EVs) phenotypes in healthy adults. Methods EV proteomics by high-resolution mass spectrometry to evaluate EV protein stability and discover age-associated EV proteins (n=4 with 4 serial freeze-thaws each); validation by high-resolution flow cytometry and EV cytokine quantification by multiplex ELISA (n=28 healthy donors, aged 18-83 years); quantification of WI-38 fibroblast cell proliferation response to co-culture with PKH67-labeled young and old plasma EVs. The EV samples from these plasma specimens were previously characterized for bilayer structure, intra-vesicle mitochondria and cytokines, and hematopoietic cell-related surface markers. Results Compared with matched exo-EVs (EV-depleted supernatants), endo-EVs (EV-associated) had higher mean TNF-α and IL-27, lower mean IL-6, IL-11, IFN-γ, and IL-17A/F, and similar mean IL-1β, IL-21, and IL-22 concentrations. Some endo-EV and exo-EV cytokine concentrations were correlated, including TNF-α, IL-27, IL-6, IL-1β, and IFN-γ, but not IL-11, IL-17A/F, IL-21 or IL-22. Endo-EV IFN-γ and exo-EV IL-17A/F and IL-21 declined with age. By proteomics and confirmed by flow cytometry, we identified age-associated decline of fibrinogen (FGA, FGB and FGG) in EVs. Age-related EV proteins indicated predominant origins in the liver and innate immune system. WI-38 cells (>95%) internalized similar amounts of young and old plasma EVs, but cells that internalized PKH67-EVs, particularly young EVs, underwent significantly greater cell proliferation. Conclusion Endo-EV and exo-EV cytokines function as different biomarkers. The observed healthy aging EV phenotype reflected a downregulation of EV fibrinogen subpopulations consistent with the absence of a pro-coagulant and pro-inflammatory condition common with age-related disease.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Noor Alnemer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Kuang G, Tan X, Liu X, Li N, Yi N, Mi Y, Shi Q, Zeng F, Xie X, Lu M, Xu X. The Role of Innate Immunity in Osteoarthritis and the Connotation of "Immune-joint" Axis: A Narrative Review. Comb Chem High Throughput Screen 2024; 27:2170-2179. [PMID: 38243960 DOI: 10.2174/0113862073264389231101190637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 01/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that results in constriction of the joint space due to the gradual deterioration of cartilage, alterations in subchondral bone, and synovial membrane. Recently, scientists have found that OA involves lesions in the whole joint, in addition to joint wear and tear and cartilage damage. Osteoarthritis is often accompanied by a subclinical form of synovitis, which is a chronic, relatively low-grade inflammatory response mainly mediated by the innate immune system. The "immune-joint" axis refers to an interaction of an innate immune response with joint inflammation and the whole joint range. Previous studies have underestimated the role of the immune-joint axis in OA, and there is no related research. For this reason, this review aimed to evaluate the existing evidence on the influence of innate immune mechanisms on the pathogenesis of OA. The innate immune system is the body's first line of defense. When the innate immune system is triggered, it instantly activates the downstream inflammatory signal pathway, causing an inflammatory response, while also promoting immune cells to invade joint synovial tissue and accelerate the progression of OA. We have proposed the concept of the "immune-joint" axis and explored it from two aspects of Traditional Chinese Medicine (TCM) theory and modern medical research, such as the innate immunity and OA, macrophages and OA, complement and OA, and other cells and OA, to enrich the scientific connotation of the "immune-joint" axis.
Collapse
Affiliation(s)
- Gaoyan Kuang
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xuyi Tan
- Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, 410006, China
| | - Xin Liu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Naping Li
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Nanxing Yi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yilin Mi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qiyun Shi
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Fan Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xinjun Xie
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Min Lu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xiaotong Xu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| |
Collapse
|
4
|
Wang J, Liu C, Wang T, Li S, Bai Y, Pan F, Wang J, Han J, Luo R, Wan X, Cui H, Huang Y, Zheng M, Hong X, Zhang JV, Xu R. Single-cell communication patterns and their intracellular information flow in synovial fibroblastic osteoarthritis and rheumatoid arthritis. Immunol Lett 2023; 263:1-13. [PMID: 37704178 DOI: 10.1016/j.imlet.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Synovial fibroblasts are critical for maintaining homeostasis in major autoimmune diseases involving joint inflammation, including osteoarthritis and rheumatoid arthritis. However, little is known about the interactions among different cell subtypes and the specific sets of signaling pathways and activities that they trigger. METHODS Using social network analysis, pattern recognition, and manifold learning approaches, we identified patterns of single-cell communication in OA (osteoarthritis) and RA (rheumatoid arthritis). RESULTS Our results suggest that OA and RA have distinct cellular communication patterns and signaling pathways. The LAMININ (Laminin) and COLLAGEN (Collagen) pathways predominate in osteoarthritis, while the EGF (Epidermal growth factor), NT (Neurotrophin) and CDH5 (Cadherin 5) pathways predominate in rheumatoid arthritis, with a central role for THY1 (Thy-1 cell surface antigen) +CDH11 (Cadherin 11) + cells. The OA opens the PDGF (Platelet-derived growth factors) pathway (driver of bone angiogenesis), the RA opens the EGF pathway (bone formation) and the SEMA3 (Semaphorin 3A) pathway (involved in immune regulation). Interestingly, we found that OA no longer has cell types involved in the MHC complex (Major histocompatibility complex) and their activity, whereas the MHC complex functions primarily in RA in the presentation of inflammatory antigens, and that the complement system in OA has the potential to displace the function of the MHC complex. The specific signaling patterns of THY1+CDH11+ cells and their secreted ligand receptors are more conducive to cell migration and lay the foundation for promoting osteoclastogenesis. This subpopulation may also be involved in the accumulation of lymphocytes, affecting the recruitment of immune cells. Members of the collagen family (COL1A1 (Collagen Type I Alpha 1 Chain), COL6A2 (Collagen Type VI Alpha 2 Chain) and COL6A1 (Collagen Type VI Alpha 1 Chain)) and transforming growth factor (TGFB3) maintain the extracellular matrix in osteoarthritis and mediate cell migration and adhesion in rheumatoid arthritis, including the PTN (Pleiotrophin) / THBS1 (Thrombospondin 1) interaction. CONCLUSION Increased understanding of the interaction networks between synovial fibroblast subtypes, particularly the shared and unique cellular communication features between osteoarthritis and rheumatoid arthritis and their hub cells, should help inform the design of therapeutic agents for inflammatory joint disease.
Collapse
Affiliation(s)
- Jiajian Wang
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China; Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China.
| | - Caihong Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Sidi Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yunmeng Bai
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital, the First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Fulin Pan
- Rheumatology and Nephrology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jiayi Wang
- First Affiliated Hospital of Anhui Medical university, Hefei 230022, China; First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jing Han
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Ruibin Luo
- Department of Clinical Laboratory, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Xing Wan
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Haiyan Cui
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Yingcai Huang
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Mingqi Zheng
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; Department of Rheumatology and Immunology, The Frist Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China.
| | - Ruihuan Xu
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
5
|
Anderson JR, Johnson E, Jenkins R, Jacobsen S, Green D, Walters M, Bundgaard L, Hausmans BAC, van den Akker G, Welting TJM, Chabronova A, Kharaz YA, Clarke EJ, James V, Peffers MJ. Multi-Omic Temporal Landscape of Plasma and Synovial Fluid-Derived Extracellular Vesicles Using an Experimental Model of Equine Osteoarthritis. Int J Mol Sci 2023; 24:14888. [PMID: 37834337 PMCID: PMC10573509 DOI: 10.3390/ijms241914888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs) contribute to osteoarthritis pathogenesis through their release into joint tissues and synovial fluid. Synovial fluid-derived EVs have the potential to be direct biomarkers in the causal pathway of disease but also enable understanding of their role in disease progression. Utilizing a temporal model of osteoarthritis, we defined the changes in matched synovial fluid and plasma-derived EV small non-coding RNA and protein cargo using sequencing and mass spectrometry. Data exploration included time series clustering, factor analysis and gene enrichment interrogation. Chondrocyte signalling was analysed using luciferase-based transcription factor activity assays. EV protein cargo appears to be more important during osteoarthritis progression than small non-coding RNAs. Cluster analysis revealed plasma-EVs represented a time-dependent response to osteoarthritis induction associated with supramolecular complexes. Clusters for synovial fluid-derived EVs were associated with initial osteoarthritis response and represented immune/inflammatory pathways. Factor analysis for plasma-derived EVs correlated with day post-induction and were primarily composed of proteins modulating lipid metabolism. Synovial fluid-derived EVs factors represented intermediate filament and supramolecular complexes reflecting tissue repair. There was a significant interaction between time and osteoarthritis for CRE, NFkB, SRE, SRF with a trend for osteoarthritis synovial fluid-derived EVs at later time points to have a more pronounced effect.
Collapse
Affiliation(s)
- James R. Anderson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Emily Johnson
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Rosalind Jenkins
- CDSS Bioanalytical Facility, Liverpool Shared Research Facilities, Department Pharmacology and Therapeutics, University of Liverpool, Liverpool L7 8TX, UK
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, DK-1870 Copenhagen, Denmark
| | - Daniel Green
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, DK-1870 Copenhagen, Denmark
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, DK-1870 Copenhagen, Denmark
| | - Bas A. C. Hausmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 Maastricht, The Netherlands; (B.A.C.H.)
| | - Guus van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 Maastricht, The Netherlands; (B.A.C.H.)
| | - Tim J. M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 Maastricht, The Netherlands; (B.A.C.H.)
| | - Alzbeta Chabronova
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Yalda A. Kharaz
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Emily J. Clarke
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Nottingham LE12 5RD, UK
| | - Mandy J. Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| |
Collapse
|
6
|
Ossendorff R, Grad S, Tertel T, Wirtz DC, Giebel B, Börger V, Schildberg FA. Immunomodulatory potential of mesenchymal stromal cell-derived extracellular vesicles in chondrocyte inflammation. Front Immunol 2023; 14:1198198. [PMID: 37564645 PMCID: PMC10410457 DOI: 10.3389/fimmu.2023.1198198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Osteoarthritis (OA) affects a large percentage of the population worldwide. Current surgical and nonsurgical concepts for treating OA only result in symptom-modifying effects. However, there is no disease-modifying therapy available. Extracellular vesicles released by mesenchymal stem/stromal cells (MSC-EV) are promising agents to positively influence joint homeostasis in the osteoarthritic surroundings. This pilot study aimed to investigate the effect of characterized MSC-EVs on chondrogenesis in a 3D chondrocyte inflammation model with the pro-inflammatory cytokine TNFα. Methods Bovine articular chondrocytes were expanded and transferred into pellet culture at passage 3. TNFα, human MSC-EV preparations (MSC-EV batches 41.5-EVi1 and 84-EVi), EVs from human platelet lysate (hPL4-EV), or the combination of TNFα and EVs were supplemented. To assess the effect of MSC-EVs in the chondrocyte inflammation model after 14 days, DNA, glycosaminoglycan (GAG), total collagen, IL-6, and NO release were quantified, and gene expression of anabolic (COL-II, aggrecan, COMP, and PRG-4), catabolic (MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5), dedifferentiation (COL-I), hypertrophy (COL-X, VEGF), and inflammatory (IL-8) markers were analyzed; histological evaluation was performed using safranin O/Fast Green staining and immunohistochemistry of COL I and II. For statistical evaluation, nonparametric tests were chosen with a significance level of p < 0.05. Results TNFα supplementation resulted in catabolic stimulation with increased levels of NO and IL-6, upregulation of catabolic gene expression, and downregulation of anabolic markers. These findings were supported by a decrease in matrix differentiation (COL-II). Supplementation of EVs resulted in an upregulation of the chondrogenic marker PRG-4. All MSC-EV preparations significantly increased GAG retention per pellet. In contrast, catabolic markers and IL-8 expression were upregulated by 41.5-EVi1. Regarding protein levels, IL-6 and NO release were increased by 41.5-EVi1. Histologic and immunohistochemical evaluations indicated a higher differentiation potential of chondrocytes treated with 84-EVi. Discussion MSC-EVs can positively influence chondrocyte matrix production in pro-inflammatory surroundings, but can also stimulate inflammation. In this study MSC-EV 41.5-EVi1 supplementation increased chondrocyte inflammation, whereas MSC-84-EVi supplementation resulted a higher chondrogenic potential of chondrocytes in 3D pellet culture. In summary, the selected MSC-EVs exhibited promising chondrogenic effects indicating their significant potential for the treatment of OA; however, the functional heterogeneity in MSC-EV preparations has to be solved.
Collapse
Affiliation(s)
- Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y, Kou X, Zhang Q. Extracellular vesicles in osteoarthritis of peripheral joint and temporomandibular joint. Front Endocrinol (Lausanne) 2023; 14:1158744. [PMID: 36950682 PMCID: PMC10025484 DOI: 10.3389/fendo.2023.1158744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a disabling disease with significant morbidity worldwide. OA attacks the large synovial joint, including the peripheral joints and temporomandibular joint (TMJ). As a representative of peripheral joint OA, knee OA shares similar symptoms with TMJ OA. However, these two joints also display differences based on their distinct development, anatomy, and physiology. Extracellular vesicles (EVs) are phospholipid bilayer nanoparticles, including exosomes, microvesicles, and apoptotic bodies. EVs contain proteins, lipids, DNA, micro-RNA, and mRNA that regulate tissue homeostasis and cell-to-cell communication, which play an essential role in the progression and treatment of OA. They are likely to partake in mechanical response, extracellular matrix degradation, and inflammatory regulation during OA. More evidence has shown that synovial fluid and synovium-derived EVs may serve as OA biomarkers. More importantly, mesenchymal stem cell-derived EV shows a therapeutic effect on OA. However, the different function of EVs in these two joints is largely unknown based on their distinct biological characteristic. Here, we reviewed the effects of EVs in OA progression and compared the difference between the knee joint and TMJ, and summarized their potential therapeutic role in the treatment of OA.
Collapse
Affiliation(s)
- Benyi Yang
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xin Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Chaoran Fu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Wenyi Cai
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Bowen Meng
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yan Qu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiaoxing Kou
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| |
Collapse
|
8
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
9
|
Zhang X, Baht GS, Huang R, Chen Y, Molitoris KH, Miller SE, Kraus VB. Rejuvenation of neutrophils and their extracellular vesicles is associated with enhanced aged fracture healing. Aging Cell 2022; 21:e13651. [PMID: 35657721 PMCID: PMC9282841 DOI: 10.1111/acel.13651] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Tissue repair is negatively affected by advanced age. Recent evidence indicates that hematopoietic cell-derived extracellular vesicles (EVs) are modulators of regenerative capacity. Here, we report that plasma EVs carrying specific surface markers indicate the degree of age-associated immunosenescence; moreover, this immunosenescence phenotype was accentuated by fracture injury. The number of CD11b+ Ly6Cintermediate Ly6Ghigh neutrophils significantly decreased with age in association with defective tissue regeneration. In response to fracture injury, the frequencies of neutrophils and associated plasma EVs were significantly higher in fracture calluses than in peripheral blood. Exposure of aged mice to youthful circulation through heterochronic parabiosis increased the number of neutrophils and their correlated Ly6G+ plasma EVs, which were associated with improved fracture healing in aged mice of heterochronic parabiosis pairs. Our findings create a foundation for utilizing specific immune cells and EV subsets as potential biomarkers and therapeutic strategies to promote resilience to stressors during aging.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Gurpreet Singh Baht
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Rong Huang
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Yu‐Hsiu Chen
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Kristin Happ Molitoris
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Sara E. Miller
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Electron Microscopy and Nanoscale Technology, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Medicine, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
10
|
Cross-Tissue Analysis Using Machine Learning to Identify Novel Biomarkers for Knee Osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9043300. [PMID: 35785145 PMCID: PMC9246600 DOI: 10.1155/2022/9043300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
Background Knee osteoarthritis (KOA) is a common degenerative joint disease. In this study, we aimed to identify new biomarkers of KOA to improve the accuracy of diagnosis and treatment. Methods GSE98918 and GSE51588 were downloaded from the Gene Expression Omnibus database as training sets, with a total of 74 samples. Gene differences were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and Disease Ontology enrichment analyses for the differentially expressed genes (DEGs), and GSEA enrichment analysis was carried out for the training gene set. Through least absolute shrinkage and selection operator regression analysis, the support vector machine recursive feature elimination algorithm, and gene expression screening, the range of DEGs was further reduced. Immune infiltration analysis was carried out, and the prediction results of the combined biomarker logistic regression model were verified with GSE55457. Results In total, 84 DEGs were identified through differential gene expression analysis. The five biomarkers that were screened further showed significant differences in cartilage, subchondral bone, and synovial tissue. The diagnostic accuracy of the model synthesized using five biomarkers through logistic regression was better than that of a single biomarker and significantly better than that of a single clinical trait. Conclusions CX3CR1, SLC7A5, ARL4C, TLR7, and MTHFD2 might be used as novel biomarkers to improve the accuracy of KOA disease diagnosis, monitor disease progression, and improve the efficacy of clinical treatment.
Collapse
|
11
|
Zhang X, Hsueh MF, Huebner JL, Kraus VB. TNF-α Carried by Plasma Extracellular Vesicles Predicts Knee Osteoarthritis Progression. Front Immunol 2021; 12:758386. [PMID: 34691080 PMCID: PMC8526961 DOI: 10.3389/fimmu.2021.758386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives To identify plasma extracellular vesicles (EVs) associated with radiographic knee osteoarthritis (OA) progression. Methods EVs of small (SEV), medium (MEV) and large (LEV) sizes from plasma of OA participants (n=30) and healthy controls (HCs, n=22) were profiled for surface markers and cytokine cargo by high-resolution flow cytometry. The concentrations of cytokines within (endo-) and outside (exo-) EVs were quantified by multiplex ELISA. EV associations with knee radiographic OA (rOA) progression were assessed by multivariable linear regression (adjusted for baseline clinical variables of age, gender, BMI and OA severity) and receiver operating characteristic (ROC) curve analysis. Results Based on integrated mean fluorescence intensity (iMFI), baseline plasma MEVs carrying CD56 (corresponding to natural killer cells) predicted rOA progression with highest area under the ROC curve (AUC) 0.714 among surface markers. Baseline iMFI of TNF-α in LEVs, MEVs and SEVs, and the total endo-EV TNF-α concentration, predicted rOA progression with AUCs 0.688, 0.821, 0.821, 0.665, respectively. In contrast, baseline plasma exo-EV TNF-α (the concentration in the same unit of plasma after EV depletion) did not predict rOA progression (AUC 0.478). Baseline endo-EV IFN-γ and exo-EV IL-6 concentrations were also associated with rOA progression, but had low discriminant capacity (AUCs 0.558 and 0.518, respectively). Conclusions Plasma EVs carry pro-inflammatory cargo that predict risk of knee rOA progression. These findings suggest that EV-associated TNF-α may be pathogenic in OA. The sequestration of pathogenic TNF-α within EVs may provide an explanation for the lack of success of systemic TNF-α inhibitors in OA trials to date.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|