1
|
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 2023; 29:16-35. [PMID: 37456581 PMCID: PMC10338239 DOI: 10.1016/j.bioactmat.2023.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury. The article explores the biologically active substances within MSC-secretome/EVs, the mechanisms responsible for the observed therapeutic effects, and the strategies that may be used to optimize MSC-secretome/EVs production based on specific therapeutic needs. The review concludes with a critical discussion of current clinical trials and a perspective on potential future directions in translating MSC-secretome and EVs into the clinic, specifically regarding how to address the challenges associated with their pharmaceutical manufacturing, including scalability, batch-to-batch consistency, adherence to Good Manufacturing Practices (GMP) guidelines, formulation, and storage, along with quality controls, access to the market and relative costs, value for money and impact on total expenditure.
Collapse
Affiliation(s)
- Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Claudio Jommi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Daniele Armocida
- A.U.O, Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Roma, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- PharmaExceed S.r.l, 27100, Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
2
|
Scocozza F, Di Gravina GM, Bari E, Auricchio F, Torre ML, Conti M. Prediction of the mechanical response of a 3D (bio)printed hybrid scaffold for improving bone tissue regeneration by structural finite element analysis. J Mech Behav Biomed Mater 2023; 142:105822. [PMID: 37116309 DOI: 10.1016/j.jmbbm.2023.105822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/04/2023]
Abstract
Scaffolds for bone tissue engineering should be osteoinductive, osteoconductive, biocompatible, biodegradable, and, at the same time, exhibit proper mechanical properties. The present study investigated the mechanical properties of a coprinted hybrid scaffold made of polycaprolactone (PCL) and an alginate-based hydrogel, which was conceived to possess a double function of in vivo bio-integration (due to the ability of the hydrogel to release lyosecretome, a freeze-dried formulation of mesenchymal stem cell secretome with osteoinductive and osteoconductive properties) and withstanding loads (due to the presence of polycaprolactone, which provides mechanical resistance). To this end, an in-silico study was conducted to predict mechanical properties. Structural finite element analysis (FEA) of the hybrid scaffold under compression was performed to compare the numerical results with the corresponding experimental data. The impact of alginate inclusion and infill patterns on scaffold stiffness was investigated. Results show an increase in mechanical properties by changing the scaffold infill pattern (linear: 145.38±28.90 vs. honeycomb: 278.96±50.19, mean and standard deviation, n = 8), while alginate inclusion does not always impact the mechanical performance of the hybrid scaffold (stiffness: 145.38±28.90 vs. 195.42±38.68 N/mm, with vs without hydrogel inclusion, respectively). This is confirmed by FEA analysis, in which a good correspondence between experimental and numerical stiffness is shown (142±28.94 vs. 117.18, respectively, linear scaffold with hydrogel inclusion). In conclusion, the computational framework is a valid tool for predicting the mechanical performance of scaffolds and is promising for future clinical applications in the maxillofacial field.
Collapse
|
3
|
Ren S, Lin Y, Liu W, Yang L, Zhao M. MSC-Exos: Important active factor of bone regeneration. Front Bioeng Biotechnol 2023; 11:1136453. [PMID: 36814713 PMCID: PMC9939647 DOI: 10.3389/fbioe.2023.1136453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Bone defect and repair is a common but difficult problem in restorative and reconstructive surgery. Bone tissue defects of different sizes caused by different reasons bring functional limitations and cosmetic deformities to patients. Mesenchymal stem cells (MSC), a major hotspot in the field of regeneration in recent years, have been widely used in various studies on bone tissue regeneration. Numerous studies have shown that the bone regenerative effects of MSC can be achieved through exosome-delivered messages. Although its osteogenic mechanism is still unclear, it is clear that MSC-Exos can directly or indirectly support the action of bone regeneration. It can act directly on various cells associated with osteogenesis, or by carrying substances that affect cellular activators or the local internal environment in target cells, or it can achieve activation of the osteogenic framework by binding to materials. Therefore, this review aims to summarize the types and content of effective contents of MSC-Exos in bone regeneration, as well as recent advances in the currently commonly used methods to enable the binding of MSC-Exos to the framework and to conclude that MSC-Exos is effective in promoting osteogenesis.
Collapse
Affiliation(s)
- Sihang Ren
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China,NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Wenyue Liu
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| |
Collapse
|
4
|
The Efficacy of Trabecular Titanium Cages to Induce Reparative Bone Activity after Lumbar Arthrodesis Studied through the 18f-Naf PET/CT Scan: Observational Clinical In-Vivo Study. Diagnostics (Basel) 2022; 12:diagnostics12102296. [PMID: 36291986 PMCID: PMC9600853 DOI: 10.3390/diagnostics12102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Titanium trabecular cages (TTCs) are emerging implants designed to achieve immediate and long-term spinal fixation with early osseointegration. However, a clear radiological and clinical demonstration of their efficacy has not yet been obtained. The purpose of this study was to evaluate the reactive bone activity of adjacent plates after insertion of custom-made titanium trabecular cages for the lumbar interbody with positron emission tomography (PET)/computed tomography (CT) 18F sodium fluoride (18F-NaF). Methods: This was an observational clinical study that included patients who underwent surgery for degenerative disease with lumbar interbody fusion performed with custom-made TTCs. Data related to the metabolic-reparative reaction following the surgery and its relationship with clinical follow-up from PET/CT performed at different weeks were evaluated. PET/CTs provided reliable data, such as areas showing abnormally high increases in uptake using a volumetric region of interest (VOI) comprising the upper (UP) and lower (DOWN) limits of the cage. Results: A total of 15 patients was selected for PET examination. Timing of PET/CTs ranged from one week to a maximum of 100 weeks after surgery. The analysis showed a negative correlation between the variables SUVmaxDOWN/time (r = −0.48, p = 0.04), ratio-DOWN/time (r = −0.53, p = 0.02), and ratio-MEAN/time (r = −0.5, p = 0.03). Shapiro−Wilk normality tests showed significant results for the variables ratio-DOWN (p = 0.002), ratio-UP (0.013), and ratio-MEAN (0.002). Conclusions: 18F-NaF PET/CT has proven to be a reliable tool for investigating the metabolic-reparative reaction following implantation of TTCs, demonstrating radiologically how this type of cage can induce reparative osteoblastic activity at the level of the vertebral endplate surface. This study further confirms how electron-beam melting (EBM)-molded titanium trabecular cages represent a promising material for reducing hardware complication rates and promoting fusion.
Collapse
|
5
|
Bari E, Scocozza F, Perteghella S, Segale L, Sorlini M, Auricchio F, Conti M, Torre ML. Three-Dimensional Bioprinted Controlled Release Scaffold Containing Mesenchymal Stem/Stromal Lyosecretome for Bone Regeneration: Sterile Manufacturing and In Vitro Biological Efficacy. Biomedicines 2022; 10:biomedicines10051063. [PMID: 35625800 PMCID: PMC9138797 DOI: 10.3390/biomedicines10051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, 3D-printed scaffolds for the controlled release of mesenchymal stem cell (MSC) freeze-dried secretome (Lyosecretome) have been proposed to enhance scaffold osteoinduction and osteoconduction; coprinting of poly(ε-caprolactone) (PCL) with alginate hydrogels allows adequate mechanical strength to be combined with the modulable kinetics of the active principle release. This study represents the feasibility study for the sterile production of coprinted scaffolds and the proof of concept for their in vitro biological efficacy. Sterile scaffolds were obtained, and Lyosecretome enhanced their colonization by MSCs, sustaining differentiation towards the bone line in an osteogenic medium. Indeed, after 14 days, the amount of mineralized matrix detected by alizarin red was significantly higher for the Lyosecretome scaffolds. The amount of osteocalcin, a specific bone matrix protein, was significantly higher at all the times considered (14 and 28 days) for the Lyosecretome scaffolds. Confocal microscopy further confirmed such results, demonstrating improved osteogenesis with the Lyosecretome scaffolds after 14 and 28 days. Overall, these results prove the role of MSC secretome, coprinted in PCL/alginate scaffolds, in inducing bone regeneration; sterile scaffolds containing MSC secretome are now available for in vivo pre-clinical tests of bone regeneration.
Collapse
Affiliation(s)
- Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy;
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (F.S.); (F.A.); (M.C.)
- P4P S.r.l., Via Scapolla 12, 27100 Pavia, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (S.P.); (M.L.T.)
- PharmaExceed S.r.l., Piazza Castello 19, 27100 Pavia, Italy;
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy;
- Correspondence:
| | - Marzio Sorlini
- PharmaExceed S.r.l., Piazza Castello 19, 27100 Pavia, Italy;
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Lugano University Centre, Campus Est, Via la Santa 1, CH-6962 Viganello, Switzerland
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (F.S.); (F.A.); (M.C.)
- P4P S.r.l., Via Scapolla 12, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (F.S.); (F.A.); (M.C.)
- P4P S.r.l., Via Scapolla 12, 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (S.P.); (M.L.T.)
- PharmaExceed S.r.l., Piazza Castello 19, 27100 Pavia, Italy;
| |
Collapse
|