1
|
Cheng CH, Guan Y, Chiplunkar VP, Mortazavi F, Medalla ML, Sullivan K, O'Callaghan JP, Koo BB, Kelly KA, Michalovicz LT. Nerve agent exposure and physiological stress alter brain microstructure and immune profiles after inflammatory challenge in a long-term rat model of Gulf War Illness. Brain Behav Immun Health 2024; 42:100878. [PMID: 39430882 PMCID: PMC11489046 DOI: 10.1016/j.bbih.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Gulf War Illness (GWI) is a disorder experienced by many veterans of the 1991 Gulf War, with symptoms including fatigue, chronic pain, respiratory and memory problems. Exposure to toxic chemicals during the war, such as oil well fire smoke, pesticides, physiological stress, and nerve agents, is thought to have triggered abnormal neuroinflammatory responses that contribute to GWI. Previous studies have examined the acute effects of combined physiological stress and chemical exposures using GWI rodent models and presented findings related to neuroinflammation and changes in diffusion magnetic resonance imaging (MRI) measures, suggesting a neuroimmune basis for GWI. In the current study, using ex vivo MRI, cytokine mRNA expression, and immunohistological analyses of brain tissues, we examined the brain structure and immune function of a chronic rat model of GWI. Our data showed that a combination of long-term corticosterone treatment (to mimic high physiological stress) and diisopropyl fluorophosphate exposure (to mimic sarin exposure) primed the response to subsequent systemic immune challenge with lipopolysaccharide resulting in elevations of multiple cytokine mRNAs, an increased activated glial population, and disrupted brain microstructure in the cingulate cortex and hippocampus compared to control groups. Our findings support the critical role of neuroinflammation, dysregulated glial activation, and their relationship to disrupted brain microstructural integrity in the pathophysiology of GWI and highlight the unique consequences of long-term combined exposures on brain biochemistry and structural connectivity.
Collapse
Affiliation(s)
- Chia-Hsin Cheng
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Yi Guan
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Vidhi P. Chiplunkar
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Maria L. Medalla
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Kimberly Sullivan
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
- School of Public Health, Boston University, Boston, MA, USA
| | - James P. O'Callaghan
- Guest Researcher, Health Effects Laboratory Division, Centers for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Bang-Bon Koo
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lindsay T. Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
2
|
Boyle SH, Upchurch J, Gifford EJ, Redding TS, Hauser ER, Malhotra D, Press A, Sims KJ, Williams CD. Military exposures and Gulf War illness in veterans with and without posttraumatic stress disorder. J Trauma Stress 2024; 37:80-91. [PMID: 37997023 DOI: 10.1002/jts.22994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/25/2023]
Abstract
Gulf War illness (GWI) is a chronic multisymptom disorder of unknown etiology that is believed to be caused by neurotoxicant exposure experienced during deployment to the Gulf War. Posttraumatic stress disorder (PTSD) covaries with GWI and is believed to play a role in GWI symptoms. The present study examined the association between self-reported military exposures and GWI, stratified by PTSD status, in veterans from the Gulf War Era Cohort and Biorepository who were deployed to the Persian Gulf during the war. Participants self-reported current GWI and PTSD symptoms as well as military exposures (e.g., pyridostigmine [PB] pills, pesticides/insecticides, combat, chemical attacks, and oil well fires) experienced during the Gulf War. Deployed veterans' (N = 921) GWI status was ascertained using the Centers for Disease Control and Prevention definition. Individuals who met the GWI criteria were stratified by PTSD status, yielding three groups: GWI-, GWI+/PTSD-, and GWI+/PTSD+. Multivariable logistic regression, adjusted for covariates, was used to examine associations between GWI/PTSD groups and military exposures. Apart from insect bait use, the GWI+/PTSD+ group had higher odds of reporting military exposures than the GWI+/PTSD- group, adjusted odds ratio (aOR) = 2.15, 95% CI [1.30, 3.56]-aOR = 6.91, 95% CI [3.39, 14.08]. Except for PB pills, the GWI+/PTSD- group had a higher likelihood of reporting military exposures than the GWI- group, aOR = 2.03, 95% CI [1.26, 3.26]-aOR = 4.01, 95% CI [1.57, 10.25]. These findings are consistent with roles for both PTSD and military exposures in the etiology of GWI.
Collapse
Affiliation(s)
- Stephen H Boyle
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Julie Upchurch
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Elizabeth J Gifford
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Center for Child and Family Policy, Duke Margolis Center for Health Policy, Duke University Sanford School of Public Policy, Durham, North Carolina, USA
| | - Thomas S Redding
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Elizabeth R Hauser
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - Ashlyn Press
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Kellie J Sims
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Christina D Williams
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| |
Collapse
|
3
|
Huitsing K, Tritsch T, Arias FJC, Collado F, Aenlle KK, Nathason L, Fletcher MA, Klimas NG, Craddock TJA. The potential role of ocular and otolaryngological mucus proteins in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Med 2024; 30:1. [PMID: 38172662 PMCID: PMC10763106 DOI: 10.1186/s10020-023-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat. Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body's defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection. Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.
Collapse
Affiliation(s)
- Kaylin Huitsing
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Tara Tritsch
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Francisco Javier Carrera Arias
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Fanny Collado
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Lubov Nathason
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA
| | - Travis J A Craddock
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Miami Veterans Affairs Medical Center, 1201 NW 16th St, Miami, FL, 33125-1624, USA.
- Department of Clinical Immunology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
- Center for Collaborative Research, Room 440, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328-2004, USA.
| |
Collapse
|
4
|
Sultana E, Shastry N, Kasarla R, Hardy J, Collado F, Aenlle K, Abreu M, Sisson E, Sullivan K, Klimas N, Craddock TJA. Disentangling the effects of PTSD from Gulf War Illness in male veterans via a systems-wide analysis of immune cell, cytokine, and symptom measures. Mil Med Res 2024; 11:2. [PMID: 38167090 PMCID: PMC10759613 DOI: 10.1186/s40779-023-00505-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND One-third of veterans returning from the 1990-1991 Gulf War reported a myriad of symptoms including cognitive dysfunction, skin rashes, musculoskeletal discomfort, and fatigue. This symptom cluster is now referred to as Gulf War Illness (GWI). As the underlying mechanisms of GWI have yet to be fully elucidated, diagnosis and treatment are based on symptomatic presentation. One confounding factor tied to the illness is the high presence of post-traumatic stress disorder (PTSD). Previous research efforts have demonstrated that both GWI and PTSD are associated with immunological dysfunction. As such, this research endeavor aimed to provide insight into the complex relationship between GWI symptoms, cytokine presence, and immune cell populations to pinpoint the impact of PTSD on these measures in GWI. METHODS Symptom measures were gathered through the Multidimensional fatigue inventory (MFI) and 36-item short form health survey (SF-36) scales and biological measures were obtained through cytokine & cytometry analysis. Subgrouping was conducted using Davidson Trauma Scale scores and the Structured Clinical Interview for Diagnostic and statistical manual of mental disorders (DSM)-5, into GWI with high probability of PTSD symptoms (GWIH) and GWI with low probability of PTSD symptoms (GWIL). Data was analyzed using Analysis of variance (ANOVA) statistical analysis along with correlation graph analysis. We mapped correlations between immune cells and cytokine signaling measures, hormones and GWI symptom measures to identify patterns in regulation between the GWIH, GWIL, and healthy control groups. RESULTS GWI with comorbid PTSD symptoms resulted in poorer health outcomes compared with both Healthy control (HC) and the GWIL subgroup. Significant differences were found in basophil levels of GWI compared with HC at peak exercise regardless of PTSD symptom comorbidity (ANOVA F = 4.7, P = 0.01,) indicating its potential usage as a biomarker for general GWI from control. While the unique identification of GWI with PTSD symptoms was less clear, the GWIL subgroup was found to be delineated from both GWIH and HC on measures of IL-15 across an exercise challenge (ANOVA F > 3.75, P < 0.03). Additional differences in natural killer (NK) cell numbers and function highlight IL-15 as a potential biomarker of GWI in the absence of PTSD symptoms. CONCLUSION We conclude that disentangling GWI and PTSD by defining trauma-based subgroups may aid in the identification of unique GWI biosignatures that can help to improve diagnosis and target treatment of GWI more effectively.
Collapse
Affiliation(s)
- Esha Sultana
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Nandan Shastry
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Rishabh Kasarla
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Jacob Hardy
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Fanny Collado
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Kristina Aenlle
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Maria Abreu
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Emily Sisson
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
- Department of Computer Science, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
| |
Collapse
|
5
|
Huitsing K, Tritsch T, Arias FJC, Collado F, Aenlle K, Nathason L, Fletcher MA, Klimas NG, Craddock T. The Potential Role of Ocular and Otolaryngological Mucus Proteins in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome. RESEARCH SQUARE 2023:rs.3.rs-3171709. [PMID: 37546944 PMCID: PMC10402253 DOI: 10.21203/rs.3.rs-3171709/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat. Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body's defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection. Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.
Collapse
Affiliation(s)
- Kaylin Huitsing
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | - Tara Tritsch
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | | | - Fanny Collado
- Bruce W Carter Department of Veterans Affairs Medical Center: Miami VA Healthcare System
| | - Kristina Aenlle
- Bruce W Carter Department of Veterans Affairs Medical Center: Miami VA Healthcare System
| | - Lubov Nathason
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | - Mary Ann Fletcher
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | - Nancy G Klimas
- Nova Southeastern University - Fort Lauderdale/Davie Campus: Nova Southeastern University
| | | |
Collapse
|
6
|
Michalovicz LT, Kelly KA, Craddock TJA, O’Callaghan JP. A Projectile Concussive Impact Model Produces Neuroinflammation in Both Mild and Moderate-Severe Traumatic Brain Injury. Brain Sci 2023; 13:623. [PMID: 37190590 PMCID: PMC10136957 DOI: 10.3390/brainsci13040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability and is experienced by nearly 3 million people annually as a result of falls, vehicular accidents, or from being struck by or against an object. While TBIs can range in severity, the majority of injuries are considered to be mild. However, TBI of any severity has the potential to have long-lasting neurological effects, including headaches, cognitive/memory impairments, mood dysfunction, and fatigue as a result of neural damage and neuroinflammation. Here, we modified a projectile concussive impact (PCI) model of TBI to deliver a closed-head impact with variable severity dependent on the material of the ball-bearing projectile. Adult male Sprague Dawley rats were evaluated for neurobehavioral, neuroinflammatory, and neural damage endpoints both acutely and longer-term (up to 72 h) post-TBI following impact with either an aluminum or stainless-steel projectile. Animals that received TBI using the stainless-steel projectile exhibited outcomes strongly correlated to moderate-severe TBI, such as prolonged unconsciousness, impaired neurobehavior, increased risk for hematoma and death, as well as significant neuronal degeneration and neuroinflammation throughout the cortex, hippocampus, thalamus, and cerebellum. In contrast, rats that received TBI with the aluminum projectile exhibited characteristics more congruous with mild TBI, such as a trend for longer periods of unconsciousness in the absence of neurobehavioral deficits, a lack of neurodegeneration, and mild neuroinflammation. Moreover, alignment of cytokine mRNA expression from the cortex of these rats with a computational model of neuron-glia interaction found that the moderate-severe TBI produced by the stainless-steel projectile strongly associated with the neuroinflammatory state, while the mild TBI existed in a state between normal and inflammatory neuron-glia interactions. Thus, these modified PCI protocols are capable of producing TBIs that model the clinical and experimental manifestations associated with both moderate-severe and mild TBI producing relevant models for the evaluation of the potential underlying roles of neuroinflammation and other chronic pathophysiology in the long-term outcomes associated with TBI.
Collapse
Affiliation(s)
- Lindsay T. Michalovicz
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Travis J. A. Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - James P. O’Callaghan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| |
Collapse
|
7
|
Engler-Chiurazzi EB, Russell AE, Povroznik JM, McDonald KO, Porter KN, Wang DS, Hammock J, Billig BK, Felton CC, Yilmaz A, Schreurs BG, O'Callaghan JD, Zwezdaryk KJ, Simpkins JW. Intermittent systemic exposure to lipopolysaccharide-induced inflammation disrupts hippocampal long-term potentiation and impairs cognition in aging male mice. Brain Behav Immun 2023; 108:279-291. [PMID: 36549577 PMCID: PMC10019559 DOI: 10.1016/j.bbi.2022.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related cognitive decline, a common component of the brain aging process, is associated with significant impairment in daily functioning and quality of life among geriatric adults. While the complexity of mechanisms underlying cognitive aging are still being elucidated, microbial exposure and the multifactorial inflammatory cascades associated with systemic infections are emerging as potential drivers of neurological senescence. The negative cognitive and neurobiological consequences of a single pathogen-associated inflammatory experience, such as that modeled through treatment with lipopolysaccharide (LPS), are well documented. Yet, the brain aging impacts of repeated, intermittent inflammatory challenges are less well studied. To extend the emerging literature assessing the impact of infection burden on cognitive function among normally aging mice, here, we repeatedly exposed adult mice to intermittent LPS challenges during the aging period. Male 10-month-old C57BL6 mice were systemically administered escalating doses of LPS once every two weeks for 2.5 months. We evaluated cognitive consequences using the non-spatial step-through inhibitory avoidance task, and both spatial working and reference memory versions of the Morris water maze. We also probed several potential mechanisms, including cortical and hippocampal cytokine/chemokine gene expression, as well as hippocampal neuronal function via extracellular field potential recordings. Though there was limited evidence for an ongoing inflammatory state in cortex and hippocampus, we observed impaired learning and memory and a disruption of hippocampal long-term potentiation. These data suggest that a history of intermittent exposure to LPS-induced inflammation is associated with subtle but significantly impaired cognition among normally aging mice. The broader impact of these findings may have important implications for standard of care involving infections in aging individuals or populations at-risk for dementia.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA; Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| | - A E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA; Magee Women's Research Institute, Allied Member, Pittsburgh, PA 15213, USA
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - K O McDonald
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - K N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - D S Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J Hammock
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - B K Billig
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - C C Felton
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A Yilmaz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - B G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J D O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - K J Zwezdaryk
- Department of Microbiology and Immunology, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
8
|
Shastry N, Sultana E, Jeffrey M, Collado F, Kibler J, DeLucia C, Fletcher MA, Klimas N, Craddock TJA. The impact of post-traumatic stress on quality of life and fatigue in women with Gulf War Illness. BMC Psychol 2022; 10:42. [PMID: 35216624 PMCID: PMC8876751 DOI: 10.1186/s40359-022-00752-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background Gulf War Illness (GWI) is a chronic, multi-symptomatic disorder characterized by fatigue, muscle pain, cognitive problems, insomnia, rashes, and gastrointestinal issues affecting an estimated 30% of the ~ 750,000 returning military Veterans of the 1990–1991 Persian Gulf War. Female Veterans deployed to combat in this war report medical symptoms, like cognition and respiratory troubles, at twice the rate compared to non-deployed female Veterans of the same era. The heterogeneity of GWI symptom presentation complicates diagnosis as well as the identification of effective treatments. This is exacerbated by the presence of co-morbidities. Defining subgroups of the illness may help alleviate these complications. One clear grouping is along the lines of gender. Our aim is to determine if women with GWI can be further subdivided into distinct subgroups based on post-traumatic stress disorder (PTSD) symptom presentation. Methods Veterans diagnosed with GWI (n = 35) and healthy sedentary controls (n = 35) were recruited through the Miami Veterans Affairs Medical Health Center. Symptoms were assessed via the RAND short form health survey, the multidimensional fatigue inventory, and the Davidson trauma scale. Hierarchal regression modeling was performed on measures of health and fatigue with PTSD symptoms as a covariate. This was followed by univariate analyses conducted with two separate GWI groups based on a cut-point of 70 for their total Davidson trauma scale value and performing heteroscedastic t-tests across all measures. Results Based on the distinct differences found in PTSD symptomology regarding all health and trauma symptoms, two subgroups were derived within female GWI Veterans. Hierarchical regression models displayed the comorbid effects of GWI and PTSD, as both conditions had measurable impacts on quality of life and fatigue (ΔR2 = 0.08–0.672), with notable differences in mental and emotional measures. Overall, a cut point analysis indicated poorer quality of life and greater fatigue within all measures for women with GWI and PTSD symptoms in comparison to those women with GWI without PTSD symptoms and healthy controls. Conclusions Our current findings support the understanding that comorbid symptoms of GWI and PTSD subsequently result in poorer quality of life and fatigue, along with establishing the possibility of varying clinical presentations.
Collapse
Affiliation(s)
- Nandan Shastry
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Esha Sultana
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Jeffrey
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA
| | - Fanny Collado
- Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA
| | - Jeffrey Kibler
- Department of Clinical and School Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christian DeLucia
- Department of Clinical and School Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA.,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, Miami, USA.,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Computer Science, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
9
|
Michalovicz LT, Kelly KA, Miller DB, Sullivan K, O'Callaghan JP. The β-adrenergic receptor blocker and anti-inflammatory drug propranolol mitigates brain cytokine expression in a long-term model of Gulf War Illness. Life Sci 2021; 285:119962. [PMID: 34563566 PMCID: PMC9047058 DOI: 10.1016/j.lfs.2021.119962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/03/2022]
Abstract
Aims: Growing evidence suggests that Gulf War Illness (GWI) is the result of underlying neuroimmune dysfunction. For example, previously we found that several GWI-relevant organophosphate acetylcholinesterase inhibitors produce heightened neuroinflammatory responses following subchronic exposure to stress hormone as a mimic of high physiological stress. The goal of the current study was to evaluate the potential for the β-adrenergic receptor inhibitor and anti-inflammatory drug, propranolol, to treat neuroinflammation in a novel long-term mouse model of GWI. Main methods: Adult male C57BL/6J mice received a subchronic exposure to corticosterone (CORT) at levels mimicking high physiological stress followed by exposure to the sarin surrogate, diisopropyl fluorophosphate (DFP). These mice were then re-exposed to CORT every other week for a total of five weeks, followed by a systemic immune challenge with lipopolysaccharide (LPS). Animals receiving the propranolol treatment were given a single dose (20 mg/kg, i.p.) either four or 11 days prior to the LPS challenge. The potential anti-neuroinflammatory effects of propranolol were interrogated by analysis of cytokine mRNA expression. Key findings: We found that our long-term GWI model produces a primed neuroinflammatory response to subsequent immune challenge that is dependent upon GWI-relevant organophosphate exposure. Propranolol treatment abrogated the elaboration of inflammatory cytokine mRNA expression in the brain instigated in our model, having no treatment effects in non-DFP exposed groups. Significance: Our results indicate that propranolol may be a promising therapy for GWI with the potential to treat the underlying neuroinflammation associated with the illness.
Collapse
Affiliation(s)
- Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|