1
|
Sonallya T, Juhász T, Szigyártó IC, Ilyés K, Singh P, Khamari D, Buzás EI, Varga Z, Beke-Somfai T. Categorizing interaction modes of antimicrobial peptides with extracellular vesicles: Disruption, membrane trespassing, and clearance of the protein corona. J Colloid Interface Sci 2025; 679:496-509. [PMID: 39378685 DOI: 10.1016/j.jcis.2024.09.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Host antimicrobial peptides (AMPs) and extracellular vesicles (EVs) are known to play important roles as part of the immune system, from antimicrobial actions to immune regulation. Recent results also demonstrate that EVs could serve as carriers for AMPs. Related, it was shown that some AMPs can remove the protein corona (PC), the externally adsorbed layer of proteins, from EVs which can be exploited for subtractive proteomics strategies. The interaction of these compounds is thus interesting for multiple reasons from better insight to natural processes to direct applications in EV-based bioengineering. However, we have only limited information on the various ways these species may interact with each other. To reach a broader overview, here we selected twenty-six AMPs, including cell-penetrating peptides (CPPs), and investigated their interactions with red blood cell-derived vesicles (REVs). For this, we employed a complex lipid biophysics including linearly polarized light spectroscopy, flow cytometry, nanoparticle tracking analysis, electron microscopy and also zeta-potential measurements. This enabled the categorization of these peptides into distinct groups. At specific low concentrations, peptides such as LL-37 and lasioglossin-III were effective in PC elimination with minimal disruption of the membrane. In contrast, AMPs like KLA, bradykinin, histatin-5, and most of the tested CPPs (e.g. octa-arginine, penetratin, and buforin II), demonstrate cell-penetrating mechanisms as they could sustain large peptide concentrations with minimal membrane damage. The systematic overview presented here shows the potential mechanism of how AMPs and EVs could interact in vivo, and also how certain peptides may be employed to manipulate EVs for specific applications.
Collapse
Affiliation(s)
- Tasvilla Sonallya
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary; Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Pázmány Péter Sétány 1/A, Hungary
| | - Tünde Juhász
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Imola Cs Szigyártó
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Kinga Ilyés
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Pázmány Péter Sétány 1/A, Hungary; Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Priyanka Singh
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary; HCEMM Extracellular Vesicle Research Group, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary; HUN-REN-SU Translational Extracellular Vesicle Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary; Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Tamás Beke-Somfai
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary.
| |
Collapse
|
2
|
Cheung LKY, Thallmair S, Yada RY. Elucidating the structure and function of a membrane-active plant protein domain using in silico mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025:184409. [PMID: 39788471 DOI: 10.1016/j.bbamem.2025.184409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The Solanum tuberosum (common potato) plant specific insert (StPSI) is an antimicrobial protein domain that exhibits membrane-disrupting and membrane-fusing activity upon dimerization at acidic pH, activity proposed to involve electrostatic attraction and membrane anchoring mediated by specific positively-charged and conserved tryptophan residues, respectively. This study is the first to employ an in silico mutagenesis approach to clarify the structure-function relationship of a plant specific insert (PSI), where ten rationally-mutated StPSI variants were investigated using all-atom and coarse-grained molecular dynamics. The tryptophan (W) residue at position 18 (W18) of wild-type StPSI was predicted to confer structural flexibility to the dimer and mediate a partial separation of the assembled monomers upon bilayer contact, while residues including W77 and the lysine (K) residue at position 83 (K83) were predicted to stabilize secondary structure and influence association with the model membrane. Mechanisms predicted to influence StPSI-membrane association included the partial separation of assembled monomers on the bilayer surface, formation of a specific salt bridge, and membrane anchoring of hinge 2 residues. The findings suggested that the structure-function relationship of StPSI involved several mechanisms that may each be modulated by specific key residues, insights that may support efforts to develop PSI with tailored membrane association for novel applications in plant biotechnology and crop protection.
Collapse
Affiliation(s)
- Lennie K Y Cheung
- Land and Food Systems, University of British Columbia, Vancouver, Canada
| | | | - Rickey Y Yada
- Land and Food Systems, University of British Columbia, Vancouver, Canada; Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
3
|
Yue J, Li T, Xu J, Chen Z, Li Y, Liang S, Liu Z, Wang Y. Discovery of anticancer peptides from natural and generated sequences using deep learning. Int J Biol Macromol 2024; 290:138880. [PMID: 39706427 DOI: 10.1016/j.ijbiomac.2024.138880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Anticancer peptides (ACPs) demonstrate significant potential in clinical cancer treatment due to their ability to selectively target and kill cancer cells. In recent years, numerous artificial intelligence (AI) algorithms have been developed. However, many predictive methods lack sufficient wet lab validation, thereby constraining the progress of models and impeding the discovery of novel ACPs. This study proposes a comprehensive research strategy by introducing CNBT-ACPred, an ACP prediction model based on a three-channel deep learning architecture, supported by extensive in vitro and in vivo experiments. CNBT-ACPred achieved an accuracy of 0.9554 and a Matthews Correlation Coefficient (MCC) of 0.8602. Compared to existing excellent models, CNBT-ACPred increased accuracy by at least 5 % and improved MCC by 15 %. Predictions were conducted on over 3.8 million sequences from Uniprot, along with 100,000 sequences generated by a deep generative model, ultimately identifying 37 out of 41 candidate peptides from >30 species that exhibited effective in vitro tumor inhibitory activity. Among these, tPep14 demonstrated significant anticancer effects in two mouse xenograft models without detectable toxicity. Finally, the study revealed correlations between the amino acid composition, structure, and function of the identified ACP candidates.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
4
|
Zhang P, Luo W, Zhang Z, Lv M, Sang L, Wen Y, Wang L, Ding C, Wu K, Li F, Nie Y, Zhu J, Liu X, Yi Y, Ding X, Zeng Y, Liu Z. A Lipid-Sensitive Spider Peptide Toxin Exhibits Selective Anti-Leukemia Efficacy through Multimodal Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404937. [PMID: 38962935 PMCID: PMC11348133 DOI: 10.1002/advs.202404937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.
Collapse
Affiliation(s)
- Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Wu Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- College of BiologyHunan UniversityChangshaHunan410082China
| | - Zixin Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Mingchong Lv
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Longkang Sang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yuhan Wen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Lingxiang Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Changhao Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Kun Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Fengjiao Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yueqi Nie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Jiaoyue Zhu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Xiaofeng Liu
- Department of HematologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yan Yi
- Department of HematologyThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510630China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Youlin Zeng
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of ResourcesHunan Normal UniversityChangshaHunan410081China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| |
Collapse
|
5
|
Cui C, Huo Q, Xiong X, Na S, Mitsuda M, Minami K, Li B, Yokota H. P18: Novel Anticancer Peptide from Induced Tumor-Suppressing Cells Targeting Breast Cancer and Bone Metastasis. Cancers (Basel) 2024; 16:2230. [PMID: 38927935 PMCID: PMC11202002 DOI: 10.3390/cancers16122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The skeletal system is a common site for metastasis from breast cancer. In our prior work, we developed induced tumor-suppressing cells (iTSCs) capable of secreting a set of tumor-suppressing proteins. In this study, we examined the possibility of identifying anticancer peptides (ACPs) from trypsin-digested protein fragments derived from iTSC proteomes. METHODS The efficacy of ACPs was examined using an MTT-based cell viability assay, a Scratch-based motility assay, an EdU-based proliferation assay, and a transwell invasion assay. To evaluate the mechanism of inhibitory action, a fluorescence resonance energy transfer (FRET)-based GTPase activity assay and a molecular docking analysis were conducted. The efficacy of ACPs was also tested using an ex vivo cancer tissue assay and a bone microenvironment assay. RESULTS Among the 12 ACP candidates, P18 (TDYMVGSYGPR) demonstrated the most effective anticancer activity. P18 was derived from Arhgdia, a Rho GDP dissociation inhibitor alpha, and exhibited inhibitory effects on the viability, migration, and invasion of breast cancer cells. It also hindered the GTPase activity of RhoA and Cdc42 and downregulated the expression of oncoproteins such as Snail and Src. The inhibitory impact of P18 was additive when it was combined with chemotherapeutic drugs such as Cisplatin and Taxol in both breast cancer cells and patient-derived tissues. P18 had no inhibitory effect on mesenchymal stem cells but suppressed the maturation of RANKL-stimulated osteoclasts and mitigated the bone loss associated with breast cancer. Furthermore, the P18 analog modified by N-terminal acetylation and C-terminal amidation (Ac-P18-NH2) exhibited stronger tumor-suppressor effects. CONCLUSIONS This study introduced a unique methodology for selecting an effective ACP from the iTSC secretome. P18 holds promise for the treatment of breast cancer and the prevention of bone destruction by regulating GTPase signaling.
Collapse
Affiliation(s)
- Changpeng Cui
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Xue Xiong
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Masaru Mitsuda
- Frontier Research Institute, Chubu University, Aichi 487-8501, Japan;
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan;
| | - Baiyan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
7
|
Chen B, Li Y, Bai H, Ji Y, Cong W, Hu H, He S. Unleashing the potential of natural biological peptide Macropin: Hydrocarbon stapling for effective breast cancer treatment. Bioorg Chem 2023; 140:106770. [PMID: 37604094 DOI: 10.1016/j.bioorg.2023.106770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
The identification of novel candidate molecules with the potential to revolutionize the treatment of breast cancer holds profound clinical significance. Macropin (Mac)-1, derived from the venom of wild bees, emerges as an auspicious therapeutic agent for combating breast cancers. Nevertheless, linear peptides have long grappled with the challenges of traversing cell membranes and succumbing to protease hydrolysis. To address this challenge, the present study employed hydrocarbon stapling modification to synthesize a range of stapled Mac-1 peptides, which were comprehensively evaluated for their chemical and biological properties. Significantly, Mac-1-sp4 exhibited a remarkable set of improvements, including enhanced helicity, proteolytic stability, cell membrane permeability, induction of cell apoptosis, in vivo antitumor activity, and inhibition of tubulin polymerization. This study explores the significant impact of the hydrocarbon stapling technique on the secondary structure, hydrolase stability, and biological activity of Mac-1, shedding light on its potential as a revolutionary and potent anti-breast cancer therapy. The findings establish a strong basis for the development of innovative and highly effective anti-tumor treatments.
Collapse
Affiliation(s)
- Baobao Chen
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Haohao Bai
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Yajing Ji
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Wei Cong
- School of Medicine, Shanghai University, 200444, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 200444, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 200444, China.
| |
Collapse
|
8
|
Singh P, Szigyártó IC, Ricci M, Gaál A, Quemé‐Peña MM, Kitka D, Fülöp L, Turiák L, Drahos L, Varga Z, Beke‐Somfai T. Removal and identification of external protein corona members from RBC-derived extracellular vesicles by surface manipulating antimicrobial peptides. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e78. [PMID: 38938416 PMCID: PMC11080927 DOI: 10.1002/jex2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/29/2024]
Abstract
In the last years, extracellular vesicles (EVs), secreted by various cells and body fluids have shown extreme potential in biomedical applications. Increasing number of studies suggest that a protein corona could adhere to the surface of EVs which can have a fundamental effect on their function, targeting and therapeutical efficacy. However, removing and identifying these corona members is currently a challenging task to achieve. In this study we have employed red blood cell-derived extracellular vesicles (REVs) as a model system and three membrane active antimicrobial peptides (AMPs), LL-37, FK-16 and CM15, to test whether they can be used to remove protein corona members from the surface of vesicles. These AMPs were reported to preferentially exert their membrane-related activity via one of the common helical surface-covering models and do not significantly affect the interior of lipid bilayer bodies. The interaction between the peptides and the REVs was followed by biophysical techniques, such as flow-linear dichroism spectroscopy which provided the effective applicable peptide concentration for protein removal. REV samples were then subjected to subsequent size exclusion chromatography and to proteomics analysis. Based on the comparison of control REVs with the peptide treated samples, seventeen proteins were identified as external protein corona members. From the three investigated AMPs, FK-16 can be considered as the best candidate to further optimize EV-related applicability of AMPs. Our results on the REV model system envisage that membrane active peptides may become a useful set of tools in engineering and modifying surfaces of EVs and other lipid-based natural particles.
Collapse
Affiliation(s)
- Priyanka Singh
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
| | - Imola Cs. Szigyártó
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| | - Maria Ricci
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| | - Anikó Gaál
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Mayra Maritza Quemé‐Peña
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
| | - Diána Kitka
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Lívia Fülöp
- Department of Medical ChemistryUniversity of SzegedSzegedHungary
| | - Lilla Turiák
- Institute of Organic ChemistryMS Proteomics Research Group, Research Centre for Natural SciencesBudapestHungary
| | - László Drahos
- Institute of Organic ChemistryMS Proteomics Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Zoltán Varga
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Tamás Beke‐Somfai
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| |
Collapse
|
9
|
Kordi M, Borzouyi Z, Chitsaz S, Asmaei MH, Salami R, Tabarzad M. Antimicrobial peptides with anticancer activity: Today status, trends and their computational design. Arch Biochem Biophys 2023; 733:109484. [PMID: 36473507 DOI: 10.1016/j.abb.2022.109484] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Some antimicrobial peptides have been shown to be able to inhibit the proliferation of cancer cell lines. Various strategies for treating cancers with active peptides have been pursued. According to the reports, anticancer peptides are important therapeutic peptides, which can act through two distinct pathways: they either just create pores in the cell membrane, or they have a vital intracellular target. In this review, publications up to Sep. 2021 had extracted form Scopus and PubMed using "antimicrobial peptide" and "anticancer peptide" as keywords. In second step, "computational design" related publications extracted. Among publications, those have similar scopes were classified and selected based on mechanisms of action and application. In this review, the most recent advances in the field of antimicrobial peptides with anti-cancer activities have been summarized. Freely available webservers such as AntiCP, ACPP, iACP, iACP-GAEnsC, ACPred are discussed here. In conclusion, despite some limitations of ACPs such as production cost and challenges, short half-life and toxicity on normal cells, the beneficial properties of AMPs make some of them good therapeutic agents for cancer therapy. Towards designing novel ACPs, the computational methods have substantial position and have been used progressively, today.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Plant Science and Biotechnology, School of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zeynab Borzouyi
- Department of Agriculture, School of Agriculture and Plant Breeding, Islamic Azad University, Sabzevar, Iran
| | - Saideh Chitsaz
- Department of Microbiology, Islamic Azad University, Karaj, Iran
| | | | - Robab Salami
- Department of Plant Science and Biotechnology, School of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Science, Iran.
| |
Collapse
|
10
|
Zhou C, Peng D, Liao B, Jia R, Wu F. ACP_MS: prediction of anticancer peptides based on feature extraction. Brief Bioinform 2022; 23:6793775. [PMID: 36326080 DOI: 10.1093/bib/bbac462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Anticancer peptides (ACPs) are bioactive peptides with antitumor activity and have become the most promising drugs in the treatment of cancer. Therefore, the accurate prediction of ACPs is of great significance to the research of cancer diseases. In the paper, we developed a more efficient prediction model called ACP_MS. Firstly, the monoMonoKGap method is used to extract the characteristic of anticancer peptide sequences and form the digital features. Then, the AdaBoost model is used to select the most discriminating features from the digital features. Finally, a stochastic gradient descent algorithm is introduced to identify anticancer peptide sequences. We adopt 7-fold cross-validation and independent test set validation, and the final accuracy of the main dataset reached 92.653% and 91.597%, respectively. The accuracy of the alternate dataset reached 98.678% and 98.317%, respectively. Compared with other advanced prediction models, the ACP_MS model improves the identification ability of anticancer peptide sequences. The data of this model can be downloaded from the public website for free https://github.com/Zhoucaimao1998/Zc.
Collapse
Affiliation(s)
- Caimao Zhou
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Dejun Peng
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Ranran Jia
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Fangxiang Wu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
11
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
12
|
Wasunan P, Maneewong C, Daengprok W, Thirabunyanon M. Bioactive Earthworm Peptides Produced by Novel Protease-Producing Bacillus velezensis PM 35 and Its Bioactivities on Liver Cancer Cell Death via Apoptosis, Antioxidant Activity, Protection Against Oxidative Stress, and Immune Cell Activation. Front Microbiol 2022; 13:892945. [PMID: 36033863 PMCID: PMC9399677 DOI: 10.3389/fmicb.2022.892945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Earthworms have long been used as traditional medicine. The purposes of this research were to create bioactive peptides from the unique Amynthas arenulus earthworm (PAAEs) and test their potentials on liver cancer bioprophylactic activity, antioxidant, oxidative stress protection, and immune cell activation. This earthworm had a high protein content ratio, at 55.39%. Besides, PM 35 is one out of 58 bacteria isolated from the earthworm carcasses that exhibited the highest protease and yield protein production which was chosen as the protease-producing bacteria to hydrolyze the protein. The genera were identified by 16S rRNA and 16S–23S rRNA comparison and confirmed as Bacillus velezensis PM 35. The response surface methodology was applied to optimize these hydrolysis parameters, i.e., the enzyme/substrate (E/S) concentration ratio [1%–3% (v/v)] and time (1–3 h) of the hydrolyzing earthworm’s proteins. The optimal hydrolyzing conditions were 3% (v/v) of E/S concentration ratio and 3 h of hydrolysis time, which found protein-hydrolysate yield (24.62%) and degree of hydrolysis (85.45%) as the highest. After being challenged in the gastrointestinal tract-resistant model, these PAAEs (MW <3 and 3–5 kDa) induced liver cancer cell (HepG2) death via apoptotic action modes (cell morphological change and DNA fragmentation). The PAAEs (MW <3 kDa) exhibited significant antioxidant activity via DPPH, ABTS, and FRAP with IC50 values of 0.94, 0.44, and 6.34 mg/ml, respectively. The PAAEs (MW < 3 kDa) were non-cytotoxic and protected the mouse fibroblast cells (L929) against oxidative stress. These PAAEs (MW < 3 kDa, 0.2 mg/ml) stimulated the B lymphocytes (122.3%), and T lymphocytes (126.7%) proliferation. This research suggests that PAAEs can be used in a variety of applications, especially in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Pimphan Wasunan
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Chutamas Maneewong
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Wichittra Daengprok
- Program in Food Science and Technology, Faculty of Engineering and Agroindustry, Maejo University, Chiang Mai, Thailand
| | - Mongkol Thirabunyanon
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
- *Correspondence: Mongkol Thirabunyanon,
| |
Collapse
|