1
|
Zhi QQ, Chen Y, Hu H, Huang WQ, Bao GG, Wan XR. Physiological and transcriptome analyses reveal tissue-specific responses of Leucaena plants to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108926. [PMID: 38996715 DOI: 10.1016/j.plaphy.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Leucaena leucocephala (Leucaena) is a leguminous tree widely cultivated in tropical and subtropical regions due to its strong environmental suitability for abiotic stresses, especially drought. However, the molecular mechanisms and key pathways involved in Leucaena's drought response require further elucidation. Here, we comparatively analyzed the physiological and early transcriptional responses of Leucaena leaves and roots under drought stress simulated by polyethylene glycol (PEG) treatments. Drought stress induced physiological changes in Leucaena seedlings, including decreases in relative water content (RWC) and increases in relative electrolyte leakage (REL), malondialdehyde (MDA), proline contents as well as antioxidant enzyme activities. In response to drought stress, 6461 and 8295 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. In both tissues, the signaling transduction pathway of plant hormones was notably the most enriched. Specifically, abscisic acid (ABA) biosynthesis and signaling related genes (NCED, PP2C, SnRK2 and ABF) were strongly upregulated particularly in leaves. The circadian rhythm, DNA replication, alpha-linolenic acid metabolism, and secondary metabolites biosynthesis related pathways were repressed in leaves, while the glycolysis/gluconeogenesis and alpha-linolenic acid metabolism and amino acid biosynthesis processes were promoted in roots. Furthermore, heterologous overexpression of Leucaena drought-inducible genes (PYL5, PP2CA, bHLH130, HSP70 and AUX22D) individually in yeast increased the tolerance to drought and heat stresses. Overall, these results deepen our understanding of the tissue-specific mechanisms of Leucaena in response to drought and provide target genes for future drought-tolerance breeding engineering in crops.
Collapse
Affiliation(s)
- Qing-Qing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ying Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Han Hu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Qi Huang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ge-Gen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Xiao-Rong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
2
|
Yan T, Shu X, Ning C, Li Y, Wang Z, Wang T, Zhuang W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2315. [PMID: 39204751 PMCID: PMC11360703 DOI: 10.3390/plants13162315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Environmental stresses, including abiotic and biotic stresses, have complex and diverse effects on the growth and development of woody plants, which have become a matter of contention due to concerns about the outcomes of climate change on plant resources, genetic diversity, and world food safety. Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes and play an important role in biotic and abiotic stress responses of woody plants. In recent years, an increasing body of studies have been conducted on the bHLH TFs in woody plants, and the roles of bHLH TFs in response to various stresses are increasingly clear and precise. Therefore, it is necessary to conduct a systematic and comprehensive review of the progress of the research of woody plants. In this review, the structural characteristics, research history and roles in the plant growth process of bHLH TFs are summarized, the gene families of bHLH TFs in woody plants are summarized, and the roles of bHLH TFs in biotic and abiotic stresses in woody plants are highlighted. Numerous studies mentioned in this review have shown that bHLH transcription factors play a crucial role in the response of woody plants to biotic and abiotic stresses. This review serves as a reference for further studies about enhancing the stress resistance and breeding of woody plants. Also, the future possible research directions of bHLH TFs in response to various stresses in woody plants will be discussed.
Collapse
Affiliation(s)
- Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Chuanli Ning
- Yantai Agricultural Technology Extension Center, Yantai 264001, China
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| |
Collapse
|
3
|
Ni L, Xu Y, Wang Z, Yu C, Hua J, Yin Y, Li H, Gu C. Integrated metabolomics and transcriptomics reveal that HhERF9 positively regulates salt tolerance in Hibiscus hamabo Siebold & Zuccarini. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108843. [PMID: 38879985 DOI: 10.1016/j.plaphy.2024.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Hibiscus hamabo Siebold & Zuccarini is one of the few semi-mangrove plants in the genus Hibiscus that can survive in saline-alkali soil and flooded land, but the mechanism underlying its adaptation to salt soil remains unknown. Here, to uncover this unsolved mystery, we characterized the changes in the accumulation of specific metabolites under salt stress in H. hamabo by integrating physiological, metabolic, and transcriptomic data, and found that osmotic adjustment and abscisic acid (ABA) is highly associated with the salt stress response. Further, a weighted gene co-expression network analysis was performed on the root transcriptome data, which identified three key candidate transcription factors responsive to salt stress. Among them, the expression HhERF9 was significantly upregulated under salt stress and ABA treatment and was involved in regulating the expression of genes related to the salt stress response. Further research indicated that HhERF9 enhances the accumulation of proline and soluble sugars by regulating the expression of genes such as NHX2 and P5CS. These findings provide a reference for improving H. hamabo through targeted genetic engineering and lay a theoretical foundation for its future promotion and cultivation in saline-alkali areas.
Collapse
Affiliation(s)
- Longjie Ni
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Yu Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Zhiquan Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chunsun Gu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| |
Collapse
|
4
|
Wang X, Wang B, Yuan F. Genome-wide identification of bHLH transcription factors and functional analysis in salt gland development of the recretohalophyte sea lavender ( Limonium bicolor). HORTICULTURE RESEARCH 2024; 11:uhae036. [PMID: 38595909 PMCID: PMC11001596 DOI: 10.1093/hr/uhae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/25/2024] [Indexed: 04/11/2024]
Abstract
Transcription factors with basic helix-loop-helix (bHLH) structures regulate plant growth, epidermal structure development, metabolic processes, and responses to stress extensively. Sea lavender (Limonium bicolor) is a recretohalophyte with unique salt glands in the epidermis that make it highly resistant to salt stress, contributing to the improvement of saline lands. However, the features of the bHLH transcription factor family in L. bicolor are largely unknown. Here, we systematically analyzed the characteristics, localization, and phylogenetic relationships of 187 identified bHLH family genes throughout the L. bicolor genome, as well as their cis-regulatory promoter elements, expression patterns, and key roles in salt gland development or salt tolerance by genetic analysis. Nine verified L. bicolor bHLH genes are expressed and the encoded proteins function in the nucleus, among which the proteins encoded by Lb2G14060 and Lb1G07934 also localize to salt glands. Analysis of CRISPR-Cas9-generated knockout mutants and overexpression lines indicated that the protein encoded by Lb1G07934 is involved in the formation of salt glands, salt secretion, and salt resistance, indicating that bHLH genes strongly influence epidermal structure development and stress responses. The current study lays the foundation for further investigation of the effects and functional mechanisms of bHLH genes in L. bicolor and paves the way for selecting salt-tolerance genes that will enhance salt resistance in crops and for the improvement of saline soils.
Collapse
Affiliation(s)
- Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong 250014, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong 250014, China
| |
Collapse
|
5
|
Liu X, Wang Y, Ma X, Zhang H, Zhou Y, Ma F, Li C. MdbHLH93 confers drought tolerance by activating MdTyDC expression and promoting dopamine biosynthesis. Int J Biol Macromol 2024; 258:129003. [PMID: 38159695 DOI: 10.1016/j.ijbiomac.2023.129003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Dopamine and its biosynthesis-limiting enzyme tyrosine decarboxylase (TyDC) play a vital part in mediating plant growth and the response to drought stress. However, the underlying molecular mechanism remains poorly understood. Here, drought stress markedly induced the expression of Malus domestica bHLH93 (MdbHLH93), the apple basic helix-loop-helix transcription factor. Moreover, MdbHLH93 directly bound to the Malus domestica TyDC (MdTyDC) promoter and positively regulated its expression, which resulted in dopamine synthesis and enhanced drought tolerance. Furthermore, the additive effect of overexpressing MdbHLH93 and MdTyDC simultaneously promoted dopamine synthesis and drought tolerance in apples, while the interference of MdbHLH93 inhibited this effect, indicating that MdTyDC-regulated dopamine synthesis and drought tolerance were positively regulated by MdbHLH93. Taken together, these findings suggest the positive regulation of dopamine accumulation by MdbHLH93 through its transcriptional regulation of MdTyDC and show that increased dopamine content confers drought tolerance in apples.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanpeng Wang
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Xiaoying Ma
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongyi Zhang
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Zhou
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Liu D, Gu C, Fu Z, Wang Z. Genome-Wide Identification and Analysis of MYB Transcription Factor Family in Hibiscus hamabo. PLANTS (BASEL, SWITZERLAND) 2023; 12:1429. [PMID: 37050056 PMCID: PMC10096737 DOI: 10.3390/plants12071429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
MYB transcription factors constitute one of the largest gene families in plants and play essential roles in the regulation of plant growth, responses to stress, and a wide variety of physiological and biochemical processes. In this study, 204 MYB proteins (HhMYBs) were identified in the Hibiscus hamabo Sieb. et Zucc (H. hamabo) genome and systematically analyzed based on their genomic sequence and transcriptomic data. The candidate HhMYB proteins and MYBs of Arabidopsis thaliana were divided into 28 subfamilies based on the analysis of their phylogenetic relationships and their motif patterns. Expression analysis using RNA-seq and quantitative real-time PCR (qRT-PCR) indicated that most HhMYBs are differentially regulated under drought and salt stresses. qRT-PCR analysis of seven selected HhMYBs suggested that the HhMYB family may have regulatory roles in the responses to stress and hormones. This study provides a framework for a more comprehensive analysis of the role of MYBs in the response to abiotic stress in H. hamabo.
Collapse
Affiliation(s)
- Dina Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Zekai Fu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
7
|
Alsamman AM, Abdelsattar M, El Allali A, Radwan KH, Nassar AE, Mousa KH, Hussein A, Mokhtar MM, Abd El-Maksoud MM, Istanbuli T, Kehel Z, Hamwieh A. Genome-wide identification, characterization, and validation of the bHLH transcription factors in grass pea. Front Genet 2023; 14:1128992. [PMID: 37021003 PMCID: PMC10067732 DOI: 10.3389/fgene.2023.1128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Background: The basic helix-loop-helix (bHLH) transcription factor is a vital component in plant biology, with a significant impact on various aspects of plant growth, cell development, and physiological processes. Grass pea is a vital agricultural crop that plays a crucial role in food security. However, the lack of genomic information presents a major challenge to its improvement and development. This highlights the urgency for deeper investigation into the function of bHLH genes in grass pea to improve our understanding of this important crop.Results: The identification of bHLH genes in grass pea was performed on a genome-wide scale using genomic and transcriptomic screening. A total of 122 genes were identified as having conserved bHLH domains and were functionally and fully annotated. The LsbHLH proteins could be classified into 18 subfamilies. There were variations in intron-exon distribution, with some genes lacking introns. The cis-element and gene enrichment analyses showed that the LsbHLHs were involved in various plant functions, including response to phytohormones, flower and fruit development, and anthocyanin synthesis. A total of 28 LsbHLHs were found to have cis-elements associated with light response and endosperm expression biosynthesis. Ten conserved motifs were identified across the LsbHLH proteins. The protein-protein interaction analysis showed that all LsbHLH proteins interacted with each other, and nine of them displayed high levels of interaction. RNA-seq analysis of four Sequence Read Archive (SRA) experiments showed high expression levels of LsbHLHs across a range of environmental conditions. Seven highly expressed genes were selected for qPCR validation, and their expression patterns in response to salt stress showed that LsbHLHD4, LsbHLHD5, LsbHLHR6, LsbHLHD8, LsbHLHR14, LsbHLHR68, and LsbHLHR86 were all expressed in response to salt stress.Conclusion: The study provides an overview of the bHLH family in the grass pea genome and sheds light on the molecular mechanisms underlying the growth and evolution of this crop. The report covers the diversity in gene structure, expression patterns, and potential roles in regulating plant growth and response to environmental stress factors in grass pea. The identified candidate LsbHLHs could be utilized as a tool to enhance the resilience and adaptation of grass pea to environmental stress.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| |
Collapse
|
8
|
Jia S, Liu X, Wen X, Waheed A, Ding Y, Kahar G, Li X, Zhang D. Genome-Wide Identification of bHLH Transcription Factor Family in Malus sieversii and Functional Exploration of MsbHLH155.1 Gene under Valsa Canker Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:620. [PMID: 36771705 PMCID: PMC9919239 DOI: 10.3390/plants12030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Xinjiang wild apple (Malus sieversii) is an ancient relic; a plant with abundant genetic diversity and disease resistance. Several transcription factors were studied in response to different biotic and abiotic stresses on the wild apple. Basic/helix-loop-helix (bHLH) is a large plant transcription factor family that plays important roles in plant responses to various biotic and abiotic stresses and has been extensively studied in several plants. However, no study has yet been conducted on the bHLH gene in M. sieversii. Based on the genome of M. sieversii, 184 putative MsbHLH genes were identified, and their physicochemical properties were studied. MsbHLH covered 23 subfamilies and lacked two subfamily genes of Arabidopsis thaliana based on the widely used classification method. Moreover, MsbHLH exon-intron structures matched subfamily classification, as evidenced by the analysis of their protein motifs. The analysis of cis-acting elements revealed that many MsbHLH genes share stress- and hormone-related cis-regulatory elements. These MsbHLH transcription factors were found to be involved in plant defense responses based on the protein-protein interactions among the differentially expressed MsbHLHs. Furthermore, 94 MsbHLH genes were differentially expressed in response to pathogenic bacteria. The qRT-PCR results also showed differential expression of MsbHLH genes. To further verify the gene function of bHLH, our study used the transient transformation method to obtain the overexpressed MsbHLH155.1 transgenic plants and inoculated them. Under Valsa canker infection, the lesion phenotype and physiological and biochemical indexes indicated that the antioxidant capacity of plants could increase and reduce the damage caused by membrane peroxidation. This study provides detailed insights into the classification, gene structure, motifs, chromosome distribution, and gene expression of bHLH genes in M. sieversii and lays a foundation for a better understanding disease resistance in plants, as well as providing candidate genes for the development of M. sieversii resistance breeding.
Collapse
Affiliation(s)
- Shanshan Jia
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaojie Liu
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Xuejing Wen
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Abdul Waheed
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Yu Ding
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Gulnaz Kahar
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaoshuang Li
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| |
Collapse
|
9
|
Zuo ZF, Lee HY, Kang HG. Basic Helix-Loop-Helix Transcription Factors: Regulators for Plant Growth Development and Abiotic Stress Responses. Int J Mol Sci 2023; 24:ijms24021419. [PMID: 36674933 PMCID: PMC9867082 DOI: 10.3390/ijms24021419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant basic helix-loop-helix (bHLH) transcription factors are involved in many physiological processes, and they play important roles in the abiotic stress responses. The literature related to genome sequences has increased, with genome-wide studies on the bHLH transcription factors in plants. Researchers have detailed the functionally characterized bHLH transcription factors from different aspects in the model plant Arabidopsis thaliana, such as iron homeostasis and abiotic stresses; however, other important economic crops, such as rice, have not been summarized and highlighted. The bHLH members in the same subfamily have similar functions; therefore, unraveling their regulatory mechanisms will help us to identify and understand the roles of some of the unknown bHLH transcription factors in the same subfamily. In this review, we summarize the available knowledge on functionally characterized bHLH transcription factors according to four categories: plant growth and development; metabolism synthesis; plant signaling, and abiotic stress responses. We also highlight the roles of the bHLH transcription factors in some economic crops, especially in rice, and discuss future research directions for possible genetic applications in crop breeding.
Collapse
|
10
|
Oncul AB, Celik Y, Unel NM, Baloglu MC. Bhlhdb: A next generation database of basic helix loop helix transcription factors based on deep learning model. J Bioinform Comput Biol 2022; 20:2250014. [DOI: 10.1142/s0219720022500147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ni L, Wang Z, Liu X, Wu S, Hua J, Liu L, Yin Y, Li H, Gu C. Genome-wide study of the GRAS gene family in Hibiscus hamabo Sieb. et Zucc and analysis of HhGRAS14-induced drought and salt stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111260. [PMID: 35487668 DOI: 10.1016/j.plantsci.2022.111260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 05/24/2023]
Abstract
GRAS proteins are widely distributed plant-specific transcription factors. In this study, we identified 59 GRAS proteins (HhGRASs) from the genomic and transcriptomic datasets of Hibiscus hamabo Sieb. et Zucc. These proteins were phylogenetically divided into nine subfamilies. RNA-seq analysis revealed that most HhGRASs were expressed in response to abiotic stresses. Results from quantitative real-time PCR analysis of nine selected HhGRASs suggested that HhGRAS14 was significantly upregulated under multiple abiotic stresses; therefore, this gene was selected for further study. Silencing HhGRAS14 in H. hamabo reduced the tolerance to drought and salt stress, while overexpression in Arabidopsis thaliana significantly increased the tolerance to drought and salt and reduced the sensitivity to abscisic acid (ABA). In summary, we analyzed the GRAS family of proteins in semi-mangrove plants for the first time and identified a gene that responds to drought and salt stress, which provided the basis for a comprehensive analysis of GRAS genes and insight into the abiotic stress response mechanism in H. hamabo.
Collapse
Affiliation(s)
- Longjie Ni
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiangdong Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Shuting Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Liangqin Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huogen Li
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
12
|
Wang Z, Ni L, Liu D, Fu Z, Hua J, Lu Z, Liu L, Yin Y, Li H, Gu C. Genome-Wide Identification and Characterization of NAC Family in Hibiscus hamabo Sieb. et Zucc. under Various Abiotic Stresses. Int J Mol Sci 2022; 23:3055. [PMID: 35328474 PMCID: PMC8949087 DOI: 10.3390/ijms23063055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022] Open
Abstract
NAC transcription factor is one of the largest plant gene families, participating in the regulation of plant biological and abiotic stresses. In this study, 182 NAC proteins (HhNACs) were identified based on genomic datasets of Hibiscus hamabo Sieb. et Zucc (H. hamabo). These proteins were divided into 19 subfamilies based on their phylogenetic relationship, motif pattern, and gene structure analysis. Expression analysis with RNA-seq revealed that most HhNACs were expressed in response to drought and salt stress. Research of quantitative real-time PCR analysis of nine selected HhNACs supported the transcriptome data's dependability and suggested that HhNAC54 was significantly upregulated under multiple abiotic stresses. Overexpression of HhNAC54 in Arabidopsis thaliana (A. thaliana) significantly increased its tolerance to salt. This study provides a basis for a comprehensive analysis of NAC transcription factor and insight into the abiotic stress response mechanism in H. hamabo.
Collapse
Affiliation(s)
- Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Z.W.); (J.H.); (Z.L.); (L.L.); (Y.Y.)
| | - Longjie Ni
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China; (L.N.); (D.L.); (Z.F.); (H.L.)
| | - Dina Liu
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China; (L.N.); (D.L.); (Z.F.); (H.L.)
| | - Zekai Fu
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China; (L.N.); (D.L.); (Z.F.); (H.L.)
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Z.W.); (J.H.); (Z.L.); (L.L.); (Y.Y.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhiguo Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Z.W.); (J.H.); (Z.L.); (L.L.); (Y.Y.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Liangqin Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Z.W.); (J.H.); (Z.L.); (L.L.); (Y.Y.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Z.W.); (J.H.); (Z.L.); (L.L.); (Y.Y.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huogen Li
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China; (L.N.); (D.L.); (Z.F.); (H.L.)
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Z.W.); (J.H.); (Z.L.); (L.L.); (Y.Y.)
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China; (L.N.); (D.L.); (Z.F.); (H.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
13
|
Transcriptome Analysis of Salt Stress in Hibiscus hamabo Sieb. et Zucc Based on Pacbio Full-Length Transcriptome Sequencing. Int J Mol Sci 2021; 23:ijms23010138. [PMID: 35008561 PMCID: PMC8745204 DOI: 10.3390/ijms23010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Hibiscus hamabo Sieb. et Zucc is an important semi-mangrove plant with great morphological features and strong salt resistance. In this study, by combining single molecule real time and next-generation sequencing technologies, we explored the transcriptomic changes in the roots of salt stressed H. hamabo. A total of 94,562 unigenes were obtained by clustering the same isoforms using the PacBio RSII platform, and 2269 differentially expressed genes were obtained under salt stress using the Illumina platform. There were 519 differentially expressed genes co-expressed at each treatment time point under salt stress, and these genes were found to be enriched in ion signal transduction and plant hormone signal transduction. We used Arabidopsis thaliana (L.) Heynh. transformation to confirm the function of the HhWRKY79 gene and discovered that overexpression enhanced salt tolerance. The full-length transcripts generated in this study provide a full characterization of the transcriptome of H. hamabo and may be useful in mining new salt stress-related genes specific to this species, while facilitating the understanding of the salt tolerance mechanisms.
Collapse
|
14
|
Abdul Aziz M, Sabeem M, Mullath SK, Brini F, Masmoudi K. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021; 11:1662. [PMID: 34827660 PMCID: PMC8615533 DOI: 10.3390/biom11111662] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
In response to various environmental stresses, plants have evolved a wide range of defense mechanisms, resulting in the overexpression of a series of stress-responsive genes. Among them, there is certain set of genes that encode for intrinsically disordered proteins (IDPs) that repair and protect the plants from damage caused by environmental stresses. Group II LEA (late embryogenesis abundant) proteins compose the most abundant and characterized group of IDPs; they accumulate in the late stages of seed development and are expressed in response to dehydration, salinity, low temperature, or abscisic acid (ABA) treatment. The physiological and biochemical characterization of group II LEA proteins has been carried out in a number of investigations because of their vital roles in protecting the integrity of biomolecules by preventing the crystallization of cellular components prior to multiple stresses. This review describes the distribution, structural architecture, and genomic diversification of group II LEA proteins, with some recent investigations on their regulation and molecular expression under various abiotic stresses. Novel aspects of group II LEA proteins in Phoenix dactylifera and in orthodox seeds are also presented. Genome-wide association studies (GWAS) indicated a ubiquitous distribution and expression of group II LEA genes in different plant cells. In vitro experimental evidence from biochemical assays has suggested that group II LEA proteins perform heterogenous functions in response to extreme stresses. Various investigations have indicated the participation of group II LEA proteins in the plant stress tolerance mechanism, spotlighting the molecular aspects of group II LEA genes and their potential role in biotechnological strategies to increase plants' survival in adverse environments.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Miloofer Sabeem
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Sangeeta Kutty Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India;
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, Sfax 3018, Tunisia;
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| |
Collapse
|
15
|
Ding A, Ding A, Li P, Wang J, Cheng T, Bao F, Zhang Q. Genome-Wide Identification and Low-Temperature Expression Analysis of bHLH Genes in Prunus mume. Front Genet 2021; 12:762135. [PMID: 34659372 PMCID: PMC8519403 DOI: 10.3389/fgene.2021.762135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
Prunus mume is an illustrious ornamental woody plant with colorful flowers, delicate fragrances, and graceful tree forms. Low temperature limits its geographical distribution. The basic helix-loop-helix (bHLH) proteins exist in most eukaryotes as a transcription factor superfamily, which play a crucial role in metabolism, physiology, development, and response to various stresses of higher organisms. However, the characteristics of the bHLH gene family and low-temperature response remain unknown in P. mume. In the present study, we distinguished 95 PmbHLH genes in the P. mume whole-genome and analyzed their features. PmbHLHs were divided into 23 subfamilies and one orphan by phylogenetic analysis. Similar gene structures and conserved motifs appeared in the same subfamily. These genes were situated in eight chromosomes and scaffolds. Gene duplication events performed a close relationship to P. mume, P. persica, and P. avium. Tandem duplications probably promoted the expansion of PmbHLHs. According to predicted binding activities, the PmbHLHs were defined as the Non-DNA-binding proteins and DNA-binding proteins. Furthermore, PmbHLHs exhibited tissue-specific and low-temperature induced expression patterns. By analyzing transcriptome data, 10 PmbHLHs which are responsive to low-temperature stress were selected. The qRT-PCR results showed that the ten PmbHLH genes could respond to low-temperature stress at different degrees. There were differences in multiple variations among different varieties. This study provides a basis to research the evolution and low-temperature tolerance of PmbHLHs, and might enhance breeding programs of P. mume by improving low-temperature tolerance.
Collapse
Affiliation(s)
- Aiqin Ding
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Research Center of Landscape Environment of Ministry of Education, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Anqi Ding
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Research Center of Landscape Environment of Ministry of Education, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Research Center of Landscape Environment of Ministry of Education, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Research Center of Landscape Environment of Ministry of Education, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Research Center of Landscape Environment of Ministry of Education, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Research Center of Landscape Environment of Ministry of Education, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Research Center of Landscape Environment of Ministry of Education, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
| |
Collapse
|