1
|
Ali SA, Perera G, Laird J, Batorsky R, Maron MS, Rivas VN, Stern JA, Harris S, Chin MT. Single Cell Transcriptomic Profiling of MYBPC3-Associated Hypertrophic Cardiomyopathy Across Species Reveals Conservation of Biological Process But Not Gene Expression. J Am Heart Assoc 2025; 14:e035780. [PMID: 39719426 DOI: 10.1161/jaha.124.035780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/16/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease where the most frequently associated mutations occur in the myosin-binding protein C (MYBPC3) sarcomere-associated gene. HCM is also a common veterinary clinical problem in certain cat breeds such as Maine Coons and Ragdolls, also most associated with mutations in MYBPC3. Mouse models of HCM in which Mybpc3 mutations are introduced recapitulate some, but not all, features of human HCM. METHODS AND RESULTS To elucidate the common and distinctive pathological pathways across species and foster a greater understanding of the concordance of mouse HCM models to clinical mybpc3-associated HCM, we generated single nuclei RNA-sequencing data sets from feline, human, and murine heart tissue carrying MYBPC3 variants. Numerous genes were differentially expressed between mutation positive and mutation negative cell types within each species, identified using the model-based analysis of single-cell transcriptomics algorithm. Gene Ontology enrichment analysis of differentially expressed genes in cardiomyocytes across species revealed alterations in genes involved in muscle development, muscle contraction, muscle hypertrophy, regulation of sarcoplasmic calcium release, ATP metabolic process, and oxidative phosphorylation. CONCLUSIONS These common biological processes across species are consistent with known phenotypic aspects of HCM such as hypertrophy, hypercontractility, diastolic dysfunction, and altered energy metabolism. Surprisingly, among conserved biological processes within cardiomyocytes across species, the individual genes driving the biological processes were distinct. This work to identify common and species-specific disease-promoting pathway differences will allow development of targeted therapies for both human and veterinary application and will facilitate an understanding of the idiosyncrasies of mouse models.
Collapse
Affiliation(s)
- Samia A Ali
- Tufts Graduate School of Biomedical Sciences Boston MA USA
| | - Gayani Perera
- Molecular Cardiology Research Institute, Tufts Medical Center Boston MA USA
| | - Jason Laird
- Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University Baltimore MD USA
| | | | - Martin S Maron
- Hypertrophic Cardiomyopathy Center Lahey Clinic Burlington MA USA
| | - Victor N Rivas
- Department of Clinical Sciences, College of Veterinary Medicine North Carolina State University Raleigh NC USA
| | - Joshua A Stern
- Department of Clinical Sciences, College of Veterinary Medicine North Carolina State University Raleigh NC USA
| | - Samantha Harris
- Department of Physiology University of Arizona Tucson AZ USA
| | - Michael T Chin
- Tufts Graduate School of Biomedical Sciences Boston MA USA
- Molecular Cardiology Research Institute, Tufts Medical Center Boston MA USA
| |
Collapse
|
2
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Wei J, Gao C, Lu C, Wang L, Dong D, Sun M. The E2F family: a ray of dawn in cardiomyopathy. Mol Cell Biochem 2024:10.1007/s11010-024-05063-4. [PMID: 38985251 DOI: 10.1007/s11010-024-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiomyopathies are a group of heterogeneous diseases, characterized by abnormal structure and function of the myocardium. For many years, it has been a hot topic because of its high morbidity and mortality as well as its complicated pathogenesis. The E2Fs, a group of transcription factors found extensively in eukaryotes, play a crucial role in governing cell proliferation, differentiation, and apoptosis, meanwhile their deregulated activity can also cause a variety of diseases. Based on accumulating evidence, E2Fs play important roles in cardiomyopathies. In this review, we describe the structural and functional characteristics of the E2F family and its role in cardiomyocyte processes, with a focus on how E2Fs are associated with the onset and development of cardiomyopathies. Moreover, we discuss the great potential of E2Fs as biomarkers and therapeutic targets, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, Liaoning, People's Republic of China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Fortier JH, Thapa Y, Crean AM, Gupta H, Grau JB. Invasive Management of Hypertrophic Cardiomyopathy With Clinically Important Obstruction: Surgical Myectomy Is Superior, but Only When Accessible. Can J Cardiol 2024; 40:843-850. [PMID: 38052300 DOI: 10.1016/j.cjca.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), a thickened intraventricular septum and systolic anterior motion of the mitral valve (SAM) can contribute to significant left ventricular outflow tract obstruction (LVOTO), mitral regurgitation, and debilitating symptoms. Current guidelines recommend septal reduction therapy through alcohol septal ablation or surgical septal myectomy for patients whose symptoms persist despite medical therapy. Although alcohol septal ablation is a less invasive treatment option, it is not suitable for patients with septal perforator branch anatomy that is not compatible with the procedure, those with midcavitary obstruction, and patients in whom the mechanism of LVOTO is primarily related to SAM. Septal ablation also has a notably higher rate of atrioventricular block requiring permanent pacemaker insertion, and the need for reintervention has been reported to be 15% or more. In contrast, septal myectomy offers direct visualisation and can address thickened septum and mitral valve (MV) anomalies. It can be used to treat a wider variety of anatomies, with lower rates of reoperation. Aside from the more invasive nature of the procedure, a major limitation of septal myectomy, however, is access, because relatively few surgeons specialise in the procedure. This is important because there is a significant correlation between procedural volumes and outcomes. Patients should be evaluated by a multidisciplinary heart team to ensure that they are aware of all treatment options. In this review, we explore the 2 methods of septal reduction therapy and highlight the need for further training of septal myectomy surgeons to ensure access to optimal septal reduction therapies for Canadian patients with HCM.
Collapse
Affiliation(s)
- Jacqueline H Fortier
- Division of Cardiothoracic Surgery, The Valley Hospital, Ridgewood, New Jersey, USA
| | - Yashaswi Thapa
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Andrew M Crean
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Division of Cardiology, University of Manchester, Manchester, United Kingdom
| | - Himanshu Gupta
- Division of Cardiac Imaging, Valley Heart and Vascular Institute, Ridgewood, New Jersey, USA
| | - Juan B Grau
- Division of Cardiothoracic Surgery, The Valley Hospital, Ridgewood, New Jersey, USA; Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Somee LR, Barati A, Shahsavani MB, Hoshino M, Hong J, Kumar A, Moosavi-Movahedi AA, Amanlou M, Yousefi R. Understanding the structural and functional changes and biochemical pathomechanism of the cardiomyopathy-associated p.R123W mutation in human αB-crystallin. Biochim Biophys Acta Gen Subj 2024; 1868:130579. [PMID: 38307443 DOI: 10.1016/j.bbagen.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
αB-crystallin, a member of the small heat shock protein (sHSP) family, is expressed in diverse tissues, including the eyes, brain, muscles, and heart. This protein plays a crucial role in maintaining eye lens transparency and exhibits holdase chaperone and anti-apoptotic activities. Therefore, structural and functional changes caused by genetic mutations in this protein may contribute to the development of disorders like cataract and cardiomyopathy. Recently, the substitution of arginine 123 with tryptophan (p.R123W mutation) in human αB-crystallin has been reported to trigger cardiomyopathy. In this study, human αB-crystallin was expressed in Escherichia coli (E. coli), and the missense mutation p.R123W was created using site-directed mutagenesis. Following purification via anion exchange chromatography, the structural and functional properties of both proteins were investigated and compared using a wide range of spectroscopic and microscopic methods. The p.R123W mutation induced significant alterations in the secondary, tertiary, and quaternary structures of human αB-crystallin. This pathogenic mutation resulted in an increased β-sheet structure and formation of protein oligomers with larger sizes compared to the wild-type protein. The mutant protein also exhibited reduced chaperone activity and lower thermal stability. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrated that the p.R123W mutant protein is more prone to forming amyloid aggregates. The structural and functional changes observed in the p.R123W mutant protein, along with its increased propensity for aggregation, could impact its proper functional interaction with the target proteins in the cardiac muscle, such as calcineurin. Our results provide an explanation for the pathogenic intervention of p.R123W mutant protein in the occurrence of hypertrophic cardiomyopathy (HCM).
Collapse
Affiliation(s)
- Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifen, People's Republic of China
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Kalyagin AN, Gamayunov DY, Silkin VI, Kurkov NN. Hypertrophic cardiomyopathy: a modern view of the problem. KAZAN MEDICAL JOURNAL 2023; 104:541-551. [DOI: 10.17816/kmj110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cardiomyopathy is considered one of the main causes of heart failure and sudden cardiac death, at least in young people. Approximately 50% of patients who die suddenly in childhood or adolescence or undergo heart transplantation suffer from this condition. The purpose of this literature review is to study and highlight the issues of etiology, pathogenesis, clinical features, diagnosis and treatment of hypertrophic cardiomyopathy from the point of view of modern ideas. The search and analysis of domestic and foreign literature materials using the PubMed and eLibrary databases was carried out. Of particular interest is the etiology of primary congenital cardiomyopathies, in respect of which research continues. As a result of the implementation of genetic factors, multiple structural and functional changes in the myocardium develop, which lead to changes in hemodynamics. Cardiomyopathy is a clinically heterogeneous disease, and one of the factors that determine the clinical phenotype is the genotype. In addition to standard laboratory testing, patients with suspected hypertrophic cardiomyopathy are advised to undergo medical genetic counseling to identify the causative mutation, and often to obtain prognostic information. The fundamental imaging method is echocardiography, but the role of magnetic resonance imaging in the diagnosis of the disease is also considered. Patients with symptomatic obstructive hypertrophic cardiomyopathy are usually recommended first-line pharmacotherapy with -blockers or non-dihydropyridine calcium channel blockers. Currently, research on new drugs for the treatment of hypertrophic cardiomyopathy inhibitors of cardiac myosin is ongoing. Surgical methods of treatment are developing progressively, however, methods of conservative treatment require further active research of drugs that have not been used before.
Collapse
|
7
|
Stern JA, Rivas VN, Kaplan JL, Ueda Y, Oldach MS, Ontiveros ES, Kooiker KB, van Dijk SJ, Harris SP. Hypertrophic cardiomyopathy in purpose-bred cats with the A31P mutation in cardiac myosin binding protein-C. Sci Rep 2023; 13:10319. [PMID: 37365215 PMCID: PMC10293195 DOI: 10.1038/s41598-023-36932-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
We sought to establish a large animal model of inherited hypertrophic cardiomyopathy (HCM) with sufficient disease severity and early penetrance for identification of novel therapeutic strategies. HCM is the most common inherited cardiac disorder affecting 1 in 250-500 people, yet few therapies for its treatment or prevention are available. A research colony of purpose-bred cats carrying the A31P mutation in MYBPC3 was founded using sperm from a single heterozygous male cat. Cardiac function in four generations was assessed by periodic echocardiography and measurement of blood biomarkers. Results showed that HCM penetrance was age-dependent, and that penetrance occurred earlier and was more severe in successive generations, especially in homozygotes. Homozygosity was also associated with progression from preclinical to clinical disease. A31P homozygous cats represent a heritable model of HCM with early disease penetrance and a severe phenotype necessary for interventional studies aimed at altering disease progression. The occurrence of a more severe phenotype in later generations of cats, and the occasional occurrence of HCM in wildtype cats suggests the presence of at least one gene modifier or a second causal variant in this research colony that exacerbates the HCM phenotype when inherited in combination with the A31P mutation.
Collapse
Affiliation(s)
- Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Dr, Raleigh, NC, 27606, USA
| | - Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Dr, Raleigh, NC, 27606, USA
| | - Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yu Ueda
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Dr, Raleigh, NC, 27606, USA
| | - Maureen S Oldach
- VCA Sacramento Veterinary Referral Center, 9801 Old Winery Place, Sacramento, CA, 95827, USA
| | - Eric S Ontiveros
- Rady Children's Institute for Genomic Medicine, 7910 Frost Street, San Diego, CA, 92123, USA
| | - Kristina B Kooiker
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, 98109, USA
| | - Sabine J van Dijk
- Department of Neurobiology, Physiology, and Behavior, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Samantha P Harris
- Department of Neurobiology, Physiology, and Behavior, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Department of Physiology, College of Medicine-Tucson, University of Arizona, 313 Medical Research Building, 1656 E Mabel St., Tucson, AZ, 85724, USA.
| |
Collapse
|
8
|
Chou C, Martin GL, Perera G, Awata J, Larson A, Blanton R, Chin MT. A novel αB-crystallin R123W variant drives hypertrophic cardiomyopathy by promoting maladaptive calcium-dependent signal transduction. Front Cardiovasc Med 2023; 10:1223244. [PMID: 37435054 PMCID: PMC10331725 DOI: 10.3389/fcvm.2023.1223244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder affecting 1 in 500 people in the general population. Characterized by asymmetric left ventricular hypertrophy, cardiomyocyte disarray and cardiac fibrosis, HCM is a highly complex disease with heterogenous clinical presentation, onset and complication. While mutations in sarcomere genes can account for a substantial proportion of familial cases of HCM, 40%-50% of HCM patients do not carry such sarcomere variants and the causal mutations for their diseases remain elusive. Recently, we identified a novel variant of the alpha-crystallin B chain (CRYABR123W) in a pair of monozygotic twins who developed concordant HCM phenotypes that manifested over a nearly identical time course. Yet, how CRYABR123W promotes the HCM phenotype remains unclear. Here, we generated mice carrying the CryabR123W knock-in allele and demonstrated that hearts from these animals exhibit increased maximal elastance at young age but reduced diastolic function with aging. Upon transverse aortic constriction, mice carrying the CryabR123W allele developed pathogenic left ventricular hypertrophy with substantial cardiac fibrosis and progressively decreased ejection fraction. Crossing of mice with a Mybpc3 frame-shift model of HCM did not potentiate pathological hypertrophy in compound heterozygotes, indicating that the pathological mechanisms in the CryabR123W model are independent of the sarcomere. In contrast to another well-characterized CRYAB variant (R120G) which induced Desmin aggregation, no evidence of protein aggregation was observed in hearts expressing CRYABR123W despite its potent effect on driving cellular hypertrophy. Mechanistically, we uncovered an unexpected protein-protein interaction between CRYAB and calcineurin. Whereas CRYAB suppresses maladaptive calcium signaling in response to pressure-overload, the R123W mutation abolished this effect and instead drove pathologic NFAT activation. Thus, our data establish the CryabR123W allele as a novel genetic model of HCM and unveiled additional sarcomere-independent mechanisms of cardiac pathological hypertrophy.
Collapse
Affiliation(s)
- Chun Chou
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Gayani Perera
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Junya Awata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Amy Larson
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Robert Blanton
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Michael T. Chin
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
9
|
Bonaventura J, Rowin EJ, Maron MS, Maron BJ. Is Hypertrophic Cardiomyopathy Always a Familial and Inherited Disease? J Am Heart Assoc 2023:e028974. [PMID: 37301765 DOI: 10.1161/jaha.122.028974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Jiri Bonaventura
- Hypertrophic Cardiomyopathy Center Lahey Hospital and Medical Center Burlington MA USA
- Department of Cardiology, 2nd Faculty of Medicine Charles University and Motol University Hospital Prague Czech Republic
| | - Ethan J Rowin
- Hypertrophic Cardiomyopathy Center Lahey Hospital and Medical Center Burlington MA USA
| | - Martin S Maron
- Hypertrophic Cardiomyopathy Center Lahey Hospital and Medical Center Burlington MA USA
| | - Barry J Maron
- Hypertrophic Cardiomyopathy Center Lahey Hospital and Medical Center Burlington MA USA
| |
Collapse
|
10
|
Pasqua T, Tropea T, Granieri MC, De Bartolo A, Spena A, Moccia F, Rocca C, Angelone T. Novel molecular insights and potential approaches for targeting hypertrophic cardiomyopathy: Focus on coronary modulators. Vascul Pharmacol 2022; 145:107003. [DOI: 10.1016/j.vph.2022.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
11
|
Larson A, Codden CJ, Huggins GS, Rastegar H, Chen FY, Maron BJ, Rowin EJ, Maron MS, Chin MT. Altered intercellular communication and extracellular matrix signaling as a potential disease mechanism in human hypertrophic cardiomyopathy. Sci Rep 2022; 12:5211. [PMID: 35338173 PMCID: PMC8956620 DOI: 10.1038/s41598-022-08561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is considered a primary disorder of the sarcomere resulting in unexplained left ventricular hypertrophy but the paradoxical association of nonmyocyte phenotypes such as fibrosis, mitral valve anomalies and microvascular occlusion is unexplained. To understand the interplay between cardiomyocyte and nonmyocyte cell types in human HCM, single nuclei RNA-sequencing was performed on myectomy specimens from HCM patients with left ventricular outflow tract obstruction and control samples from donor hearts free of cardiovascular disease. Clustering analysis based on gene expression patterns identified a total of 34 distinct cell populations, which were classified into 10 different cell types based on marker gene expression. Differential gene expression analysis comparing HCM to Normal datasets revealed differences in sarcomere and extracellular matrix gene expression. Analysis of expressed ligand-receptor pairs across multiple cell types indicated profound alteration in HCM intercellular communication, particularly between cardiomyocytes and fibroblasts, fibroblasts and lymphocytes and involving integrin β1 and its multiple extracellular matrix (ECM) cognate ligands. These findings provide a paradigm for how sarcomere dysfunction is associated with reduced cardiomyocyte secretion of ECM ligands, altered fibroblast ligand-receptor interactions with other cell types and increased fibroblast to lymphocyte signaling, which can further alter the ECM composition and promote nonmyocyte phenotypes.
Collapse
Affiliation(s)
- Amy Larson
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA, 02111, USA
| | - Christina J Codden
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA, 02111, USA
| | - Gordon S Huggins
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA, 02111, USA.,CardioVascular Center, Tufts Medical Center, Boston, MA, USA
| | - Hassan Rastegar
- CardioVascular Center, Tufts Medical Center, Boston, MA, USA.,Hypertrophic Cardiomyopathy Center, Tufts Medical Center, Boston, MA, USA
| | | | - Barry J Maron
- CardioVascular Center, Tufts Medical Center, Boston, MA, USA.,Hypertrophic Cardiomyopathy Center, Tufts Medical Center, Boston, MA, USA
| | - Ethan J Rowin
- CardioVascular Center, Tufts Medical Center, Boston, MA, USA.,Hypertrophic Cardiomyopathy Center, Tufts Medical Center, Boston, MA, USA
| | - Martin S Maron
- CardioVascular Center, Tufts Medical Center, Boston, MA, USA.,Hypertrophic Cardiomyopathy Center, Tufts Medical Center, Boston, MA, USA
| | - Michael T Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA, 02111, USA. .,CardioVascular Center, Tufts Medical Center, Boston, MA, USA. .,Hypertrophic Cardiomyopathy Center, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
12
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
13
|
Discerning the Ambiguous Role of Missense TTN Variants in Inherited Arrhythmogenic Syndromes. J Pers Med 2022; 12:jpm12020241. [PMID: 35207729 PMCID: PMC8877366 DOI: 10.3390/jpm12020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022] Open
Abstract
The titin gene (TTN) is associated with several diseases, including inherited arrhythmias. Most of these diagnoses are attributed to rare TTN variants encoding truncated forms, but missense variants represent a diagnostic challenge for clinical genetics. The proper interpretation of genetic data is critical for translation into the clinical setting. Notably, many TTN variants were classified before 2015, when the American College of Medical Genetics and Genomics (ACMG) published recommendations to accurately classify genetic variants. Our aim was to perform an exhaustive reanalysis of rare missense TTN variants that were classified before 2015, and that have ambiguous roles in inherited arrhythmogenic syndromes. Rare missense TTN variants classified before 2015 were updated following the ACMG recommendations and according to all the currently available data. Our cohort included 193 individuals definitively diagnosed with an inherited arrhythmogenic syndrome before 2015. Our analysis resulted in the reclassification of 36.8% of the missense variants from unknown to benign/likely benign. Of all the remaining variants, currently classified as of unknown significance, 38.3% showed a potential, but not confirmed, deleterious role. Most of these rare missense TTN variants with a suspected deleterious role were identified in patients diagnosed with hypertrophic cardiomyopathy. More than 35% of the rare missense TTN variants previously classified as ambiguous were reclassified as not deleterious, mainly because of improved population frequencies. Despite being inconclusive, almost 40% of the variants showed a potentially deleterious role in inherited arrhythmogenic syndromes. Our results highlight the importance of the periodical reclassification of rare missense TTN variants to improve genetic diagnoses and help increase the accuracy of personalized medicine.
Collapse
|
14
|
Codden CJ, Chin MT. Common and Distinctive Intercellular Communication Patterns in Human Obstructive and Nonobstructive Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:946. [PMID: 35055131 PMCID: PMC8780670 DOI: 10.3390/ijms23020946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder characterized by unexplained left ventricular hypertrophy with or without left ventricular outflow tract (LVOT) obstruction. Single-nuclei RNA-sequencing (snRNA-seq) of both obstructive and nonobstructive HCM patient samples has revealed alterations in communication between various cell types, but no direct and integrated comparison between the two HCM phenotypes has been reported. We performed a bioinformatic analysis of HCM snRNA-seq datasets from obstructive and nonobstructive patient samples to identify differentially expressed genes and distinctive patterns of intercellular communication. Differential gene expression analysis revealed 37 differentially expressed genes, predominantly in cardiomyocytes but also in other cell types, relevant to aging, muscle contraction, cell motility, and the extracellular matrix. Intercellular communication was generally reduced in HCM, affecting the extracellular matrix, growth factor binding, integrin binding, PDGF binding, and SMAD binding, but with increases in adenylate cyclase binding, calcium channel inhibitor activity, and serine-threonine kinase activity in nonobstructive HCM. Increases in neuron to leukocyte and dendritic cell communication, in fibroblast to leukocyte and dendritic cell communication, and in endothelial cell communication to other cell types, largely through changes in the expression of integrin-β1 and its cognate ligands, were also noted. These findings indicate both common and distinct physiological mechanisms affecting the pathogenesis of obstructive and nonobstructive HCM and provide opportunities for the personalized management of different HCM phenotypes.
Collapse
Affiliation(s)
- Christina J. Codden
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA;
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA;
- Tufts Hypertrophic Cardiomyopathy Center and Research Institute, Boston, MA 02111, USA
| |
Collapse
|
15
|
Osmak G, Baulina N, Kiselev I, Favorova O. MiRNA-Regulated Pathways for Hypertrophic Cardiomyopathy: Network-Based Approach to Insight into Pathogenesis. Genes (Basel) 2021; 12:genes12122016. [PMID: 34946964 PMCID: PMC8701189 DOI: 10.3390/genes12122016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common hereditary heart disease. The wide spread of high-throughput sequencing casts doubt on its monogenic nature, suggesting the presence of mechanisms of HCM development independent from mutations in sarcomeric genes. From this point of view, HCM may arise from the interactions of several HCM-associated genes, and from disturbance of regulation of their expression. We developed a bioinformatic workflow to study the involvement of signaling pathways in HCM development through analyzing data on human heart-specific gene expression, miRNA-target gene interactions, and protein-protein interactions, available in open databases. Genes regulated by a pool of miRNAs contributing to human cardiac hypertrophy, namely hsa-miR-1-3p, hsa-miR-19b-3p, hsa-miR-21-5p, hsa-miR-29a-3p, hsa-miR-93-5p, hsa-miR-133a-3p, hsa-miR-155-5p, hsa-miR-199a-3p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-451a, and hsa-miR-497-5p, were considered. As a result, we pinpointed a module of TGFβ-mediated SMAD signaling pathways, enriched by targets of the selected miRNAs, that may contribute to the cardiac remodeling in HCM. We suggest that the developed network-based approach could be useful in providing a more accurate glimpse on pathological processes in the disease pathogenesis.
Collapse
Affiliation(s)
- German Osmak
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Correspondence:
| | - Natalia Baulina
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ivan Kiselev
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Olga Favorova
- Laboratory of Functional Genomics of Cardiovascular Disorders, National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.B.); (I.K.); (O.F.)
- Laboratory of Medical Genomics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
16
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|