1
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Johnson R, Otway R, Chin E, Horvat C, Ohanian M, Wilcox JA, Su Z, Prestes P, Smolnikov A, Soka M, Guo G, Rath E, Chakravorty S, Chrzanowski L, Hayward CS, Keogh AM, Macdonald PS, Giannoulatou E, Chang AC, Oates EC, Charchar F, Seidman JG, Seidman CE, Hegde M, Fatkin D. DMD-Associated Dilated Cardiomyopathy: Genotypes, Phenotypes, and Phenocopies. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:421-430. [PMID: 37671549 PMCID: PMC10592075 DOI: 10.1161/circgen.123.004221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. METHODS Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. RESULTS Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. CONCLUSIONS Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management.
Collapse
Affiliation(s)
- Renee Johnson
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robyn Otway
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
| | - Ephrem Chin
- Dept of Human Genetics, Emory Univ School of Medicine, Atlanta GA
- PerkinElmer Genomics, PerkinElmer, Waltham
| | | | | | | | - Zheng Su
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, Australia
| | - Priscilla Prestes
- Health Innovation & Transformation Ctr, Federation Univ Australia, Ballarat, Victoria, Australia
| | - Andrei Smolnikov
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, Australia
| | | | | | - Emma Rath
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Samya Chakravorty
- Dept of Human Genetics, Emory Univ School of Medicine, Atlanta GA
- Biocon Bristol Myers Squibb Rsrch & Development Ctr (BBRC), Bangalore, India
| | | | - Christopher S. Hayward
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Anne M. Keogh
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Peter S. Macdonald
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Alex C.Y. Chang
- Dept of Cardiology & Shanghai Inst of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong Univ School of Medicine, Shanghai, China
- Baxter Laboratory for Stem Cell Biology, Dept of Microbiology & Immunology, Inst for Stem Cell Biology & Regenerative Medicine, Stanford Univ School of Medicine, Stanford, CA
| | - Emily C. Oates
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, Australia
| | - Fadi Charchar
- Health Innovation & Transformation Ctr, Federation Univ Australia, Ballarat, Victoria, Australia
| | - Jonathan G. Seidman
- Dept of Genetics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Inst, Boston
| | - Christine E. Seidman
- Dept of Genetics, Harvard Medical School, Boston, MA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston MA
| | - Madhuri Hegde
- Dept of Human Genetics, Emory Univ School of Medicine, Atlanta GA
- PerkinElmer Genomics, PerkinElmer, Waltham
| | - Diane Fatkin
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
3
|
Murphy S, Zweyer M, Swandulla D, Ohlendieck K. Bioinformatic Analysis of the Subproteomic Profile of Cardiomyopathic Tissue. Methods Mol Biol 2023; 2596:377-395. [PMID: 36378452 DOI: 10.1007/978-1-0716-2831-7_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Following large-scale protein separation by two-dimensional gel electrophoresis or liquid chromatography, mass spectrometry-based proteomics can be used for the swift identification and characterization of cardiac proteins and their various proteoforms. Comparative cardiac proteomics has been widely applied for the systematic analysis of heart disease and the establishment of novel diagnostic protein biomarkers. The X-linked neuromuscular disorder Duchenne muscular dystrophy is a multisystemic disease that is characterized by late-onset cardiomyopathy. This chapter outlines the bioinformatic analysis of the subproteomic profile of cardiac tissue from wild-type versus the dystrophic mdx-4cv mouse model of dystrophinopathy.
Collapse
Affiliation(s)
- Sandra Murphy
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
4
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|