1
|
Tawiah EDY, Sarfo JO. "…They were just treating her Symptom by Symptom": maternal experiences of having a child with spinal muscular atrophy in Ghana. BMC Palliat Care 2025; 24:17. [PMID: 39891157 PMCID: PMC11786418 DOI: 10.1186/s12904-025-01651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Children with Spinal Muscular Atrophy (SMA) face the challenges of a rare condition impacting their motor neurons, placing substantial caregiving burdens on their mothers. Despite being primary caregivers, mothers of children with SMA in Ghana often find their voices unheard, with restricted access to vital interventions like counselling, support groups, and respite care designed to aid them. This study aimed to explore the experiences of mothers caring for children with SMA in Ghana, where the diagnosis is often delayed and support systems are limited. METHODS We conducted an interpretative phenomenological study with a purposive sample of seven mothers whose children, aged between 8 and 24 months, were diagnosed with Spinal Muscular Atrophy (SMA) and registered with the Rare Disease Ghana Initiative (RDGI). Individual interviews were conducted between August and September 2023 using semi-structured interview guides. The data were manually analysed using a pen-and-paper method. The study adhered to ethical guidelines, including informed consent procedures and confidentiality measures to protect participants' rights and privacy. RESULTS This study explored mothers' experiences caring for children with SMA, revealing a spectrum of challenges that impact their physical, emotional, spiritual, and social well-being. The findings identified five dominant themes and thirteen subcategories, encompassing issues such as sleep deprivation, mental health concerns, emotional turmoil, practical difficulties, and social isolation. It was also found that mothers tend to have a deep connection to their faith and a sense of closeness to God during challenging times, which provides them with strength and comfort. This collectively identifies the difficult journey of these mothers as they seek diagnosis and treatment for their children. CONCLUSION The study identified challenges faced by mothers in caring for their children with SMA. These challenges are reported to significantly impact their physical, psychological, social, and spiritual well-being. To support these mothers effectively, it is recommended that the Ministry of Health, Ghana Health Service, healthcare professionals, policymakers, and non-governmental organisations in Ghana should consider community engagement and education, integration of spiritual care, and psychosocial support programmes.
Collapse
Affiliation(s)
- Esther Doe-Yo Tawiah
- Department of Education and Psychology, University of Cape Coast, Cape Coast, Ghana
- Centre for Behaviours and Wellness, Koforidua, Ghana
| | - Jacob Owusu Sarfo
- Department of Health, Physical Education and Recreation, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
2
|
Gajewska E, Fliciński J, Sobieska M, Michalska J, Żarowski M, Steinborn B. Case Report: Atypical motor development in a patient with the mosaic form of Down syndrome and spinal muscular atrophy type 2- long-term observation. Front Genet 2024; 15:1483903. [PMID: 39649095 PMCID: PMC11621056 DOI: 10.3389/fgene.2024.1483903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024] Open
Abstract
A boy is presented in whom Down Syndrome mosaicism and spinal muscular atrophy by overlapping clinical symptoms delayed the diagnosis and caused complicated motor development. The boy from the first pregnancy was delivered vaginally, week 37, Apgar 10, birth weight 3,650 g. The mother, aged 30, had no family history of Down Syndrome or neuromuscular diseases. Primary diagnosis at the age of 3 weeks: unbalanced male karyotype -mos 47, XY+21 [22]/46, XY. At 20 months, the parents observed the disappearance of the high kneeling function and asked for a neurologist's consultation. The neurological examination showed symmetrically reduced muscle tone and symmetrically weakened knee and ankle tendon reflexes. The physiotherapeutic assessment revealed a symmetrical weakening of muscle strength and hand tremor (features characteristic of patients with spinal muscular atrophy). The final diagnosis, set at the age of 27 months, was thus the mosaic form of Down Syndrome and spinal muscular atrophy type 2.
Collapse
Affiliation(s)
- Ewa Gajewska
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jędrzej Fliciński
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Magdalena Sobieska
- Department of Rehabilitation and Physiotherapy, Poznan University of Medical Sciences, Poznań, Poland
| | - Joanna Michalska
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Basak S, Biswas N, Gill J, Ashili S. Spinal Muscular Atrophy: Current Medications and Re-purposed Drugs. Cell Mol Neurobiol 2024; 44:75. [PMID: 39514016 PMCID: PMC11549153 DOI: 10.1007/s10571-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic neuromuscular disorder that is characterized by gradual muscle weakness and atrophy due to the degeneration of alpha motor neurons that are present on the anterior horn of the spinal cord. Despite the comprehensive investigations conducted by global scientists, effective treatments or interventions remain elusive. The time- and resource-intensive nature of the initial stages of drug research underscores the need for alternate strategies like drug repurposing. This review explores the repurposed drugs that have shown some improvement in treating SMA, including branaplam, riluzole, olesoxime, harmine, and prednisolone. The current strategy for medication repurposing, however, lacks systematicity and frequently depends more on serendipitous discoveries than on organized approaches. To speed up the development of successful therapeutic interventions, it is apparent that a methodical approach targeting the molecular origins of SMA is strictly required.
Collapse
Affiliation(s)
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India.
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA.
| | - Jaya Gill
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA
| | | |
Collapse
|
4
|
Grandi FC, Astord S, Pezet S, Gidaja E, Mazzucchi S, Chapart M, Vasseur S, Mamchaoui K, Smeriglio P. Characterization of SMA type II skeletal muscle from treated patients shows OXPHOS deficiency and denervation. JCI Insight 2024; 9:e180992. [PMID: 39264856 PMCID: PMC11530132 DOI: 10.1172/jci.insight.180992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive developmental disorder caused by the genetic loss or mutation of the gene SMN1 (survival of motor neuron 1). SMA is characterized by neuromuscular symptoms and muscle weakness. Several years ago, SMA treatment underwent a radical transformation, with the approval of 3 different SMN-dependent disease-modifying therapies. This includes 2 SMN2 splicing therapies - risdiplam and nusinersen. One main challenge for type II SMA patients treated with these drugs is ongoing muscle fatigue, limited mobility, and other skeletal problems. To date, few molecular studies have been conducted on SMA patient-derived tissues after treatment, limiting our understanding of what targets remain unchanged after the spinal cord-targeted therapies are applied. Therefore, we collected paravertebral muscle from 8 type II patients undergoing spinal surgery for scoliosis and 7 controls. We used RNA-seq to characterize their transcriptional profiles and correlate these molecular changes with muscle histology. Despite the limited cohort size and heterogeneity, we observed a consistent loss of oxidative phosphorylation (OXPHOS) machinery of the mitochondria, a decrease in mitochondrial DNA copy number, and a correlation between signals of cellular stress, denervation, and increased fibrosis. This work provides new putative targets for combination therapies for type II SMA.
Collapse
Affiliation(s)
- Fiorella Carla Grandi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Stéphanie Astord
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sonia Pezet
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Elèna Gidaja
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sabrina Mazzucchi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Maud Chapart
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Stéphane Vasseur
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| |
Collapse
|
5
|
Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, Gokce N, Yildirim DT, Bingol NN, Karanfilska DP, Bertelli M, Pojskic L, Ercan M, Kellermayer M, Sahin IO, Greiner-Tollersrud OK, Tan B, Martin D, Marks R, Prakash S, Yakubi M, Beccari T, Lal R, Temel SG, Fournier I, Ergoren MC, Mechler A, Salzet M, Maffia M, Danalev D, Sun Q, Nei L, Matulis D, Tapaloaga D, Janecke A, Bown J, Cruz KS, Radecka I, Ozturk C, Nalbantoglu OU, Sag SO, Ko K, Arngrimsson R, Belo I, Akalin H, Dundar M. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024; 24:138. [PMID: 39147901 DOI: 10.1007/s10142-024-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Sait Dundar
- Department of Electrical and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, Kayseri, Turkey
| | - A Baki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gary Henehan
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - José A Sánchez-Alcázar
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Instituto de Salud Carlos III, Sevilla, Spain
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu T Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Dijana Plaseska Karanfilska
- Research Centre for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mehmet Ercan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Busra Tan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Donald Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), Grenoble, France
| | - Robert Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Satya Prakash
- Department of Biomedical Engineering, University of McGill, Montreal, QC, Canada
| | - Mustafa Yakubi
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tommaso Beccari
- Department of Pharmeceutical Sciences, University of Perugia, Perugia, Italy
| | - Ratnesh Lal
- Neuroscience Research Institute, University of California, Santa Barbara, USA
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - M Cerkez Ergoren
- Department of Medical Genetics, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, Lecce, 73100, Italy
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Qun Sun
- Department of Food Science and Technology, Sichuan University, Chengdu, China
| | - Lembit Nei
- School of Engineering Tallinn University of Technology, Tartu College, Tartu, Estonia
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dana Tapaloaga
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andres Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - James Bown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Celal Ozturk
- Department of Software Engineering, Erciyes University, Kayseri, Turkey
| | - Ozkan Ufuk Nalbantoglu
- Department of Computer Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Reynir Arngrimsson
- Iceland Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
6
|
Bagga P, Singh S, Ram G, Kapil S, Singh A. Diving into progress: a review on current therapeutic advancements in spinal muscular atrophy. Front Neurol 2024; 15:1368658. [PMID: 38854961 PMCID: PMC11157111 DOI: 10.3389/fneur.2024.1368658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an uncommon disorder associated with genes characterized by the gradual weakening and deterioration of muscles, often leading to substantial disability and premature mortality. Over the past decade, remarkable strides have been made in the field of SMA therapeutics, revolutionizing the landscape of patient care. One pivotal advancement is the development of gene-targeted therapies, such as nusinersen, onasemnogene abeparvovec and risdiplam which have demonstrated unprecedented efficacy in slowing disease progression. These therapies aim to address the root cause of SMA by targeting the survival motor neuron (SMN) gene, effectively restoring deficient SMN protein levels. The advent of these innovative approaches has transformed the prognosis for many SMA patients, offering a glimmer of hope where there was once limited therapeutic recourse. Furthermore, the emergence of small molecule compounds and RNA-targeting strategies has expanded the therapeutic arsenal against SMA. These novel interventions exhibit diverse mechanisms of action, including SMN protein stabilization and modulation of RNA splicing, showcasing the multifaceted nature of SMA treatment research. Collective efforts of pharmaceutical industries, research centers, and patient advocacy groups have played an important role in expediting the translation of scientific discoveries into visible clinical benefits. This review not only highlights the remarkable progress achieved in SMA therapeutics but also generates the ray of hope for the ongoing efforts required to enhance accessibility, optimize treatment strategies, rehabilitation (care and therapies) and ultimately pave the way for an improved quality of life for individuals affected by SMA.
Collapse
Affiliation(s)
- Pankaj Bagga
- School of Bioengineering & Biosciences, Lovely Professional University (LPU), Phagwara, India
| | - Sudhakar Singh
- School of Bioengineering & Biosciences, Lovely Professional University (LPU), Phagwara, India
| | - Gobind Ram
- PG Department of Biotechnology, Layalpur Khalsa College, Jalandhar, India
| | - Subham Kapil
- Department of Zoology, DAV College Jalandhar, Jalandhar, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), Adama, Ethiopia
| |
Collapse
|
7
|
Funato M, Kino A, Iwata R, Yumioka M, Yamashita K, Urui C, Uno R, Kondo E, Morioka E, Ogawa Y, Kawamura A, Kusukawa T, Minatsu H. Later efficacy of nusinersen treatment in adult patients with spinal muscular atrophy: A retrospective case study with a median 4-year follow-up. Brain Dev 2024; 46:62-67. [PMID: 37657961 DOI: 10.1016/j.braindev.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a hereditary neuromuscular disorder characterized by skeletal muscle atrophy and weakness. New treatments for SMA have been developed namely, the drugs nusinersen, onasemnogene abeparvovec, and risdiplam. However, there are limited reports on their effects on adult patients with SMA, particularly over long periods. Therefore, this study aimed to determine the efficacy of nusinersen treatment in adult patients with SMA. METHODS We retrospectively reviewed patients with SMA type 2 or 3 who received nusinersen treatment between January 2018 and January 2023. All patients were evaluated using the Hammersmith Functional Motor Scale-Expanded (HFMSE) before the commencement of nusinersen treatment, and the change with respect to the baseline HFMSE score was compared. RESULTS A total of six patients, three patients each with SMA type 2 or 3, were treated with nusinersen. The median age of the patients before the commencement of nusinersen treatment was 51.5 years (range, 33-59 years), and the median treatment period was 50.5 months (range, 33-57 months). Three patients showed an increased tendency of improvement on the HFMSE at 15-26 months after nusinersen treatment, and the HFMSE score was maintained in two patients. Significant adverse events were observed in three patients: one subdural hematoma, one incidental bone fracture, and one cheek dermatofibrosarcoma. CONCLUSIONS Nusinersen treatment showed later efficacy in adult patients with SMA type 2 or 3. The distinct efficacy of nusinersen requires further investigation using a large number of cases and a long follow-up period.
Collapse
Affiliation(s)
- Michinori Funato
- Department of Pediatric Neurology, National Hospital Organization Nagara Medical Center, Gifu, Japan.
| | - Atsunari Kino
- Department of Anesthesia, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Reina Iwata
- Department of Pharmacy, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Misaki Yumioka
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Kohei Yamashita
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Chika Urui
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Ryoya Uno
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Emi Kondo
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Etsuko Morioka
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Yoko Ogawa
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Akihisa Kawamura
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Toshifumi Kusukawa
- Department of Rehabilitation, National Hospital Organization Nagara Medical Center, Gifu, Japan
| | - Hiroshi Minatsu
- Department of Pediatric Surgery, National Hospital Organization Nagara Medical Center, Gifu, Japan
| |
Collapse
|
8
|
Sabuncu Gürses G, Erdem SS, Saçan MT. A QSAR study to predict the survival motor neuron promoter activity of candidate diaminoquinazoline derivatives for the potential treatment of spinal muscular atrophy. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:247-266. [PMID: 37125536 DOI: 10.1080/1062936x.2023.2200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spinal Muscular Atrophy is a genetic neuromuscular disease that leads to muscle weakness and atrophy and it is characterized by the loss of α-motor neurons in the spinal cord's anterior horn cells. The disease appears due to low levels of the survival motor neuron protein. There are continuing clinical trials for the treatment of Spinal Muscular Atrophy. Quinazoline-based compounds are promising since they were tested on fibroblasts derived from the patients and found to increase the survival motor neuron protein levels. In this study, using multiple linear regression, we generated robust and valid quantitative structure- activity relationship models to predict the survival motor neuron-2 promoter activity of the new candidate compounds using the experimental survival motor neuron-2 promoter activity values of 2,4-diaminoquinazoline derivatives taken from the literature. The novel compounds designed by combining the pyrido[1,2-α]pyrimidin-4-one moeity of the known drug Risdiplam with that of 2,4 - diaminoquinazoline scaffold were predicted to exhibit strong promoter activities.
Collapse
Affiliation(s)
- G Sabuncu Gürses
- Chemistry Department, Faculty of Science, Marmara University, Istanbul, Turkey
| | - S S Erdem
- Chemistry Department, Faculty of Science, Marmara University, Istanbul, Turkey
| | - M T Saçan
- Institute of Environmental Sciences, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
9
|
Prospective Analysis of Functional and Structural Changes in Patients with Spinal Muscular Atrophy-A Pilot Study. Biomedicines 2022; 10:biomedicines10123187. [PMID: 36551943 PMCID: PMC9776007 DOI: 10.3390/biomedicines10123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, autosomal recessive neuromuscular disease. Recent years have seen a significant development of therapeutic options for SMA patients. With the development of treatment methods, it has become necessary to adapt a physiotherapeutic approach to the evolving clinical picture of SMA patients. We presented an analysis of 40 SMA patients undergoing pharmacological treatment, examined twice in an average interval of 5 months. Twelve patients (non-sitters) were evaluated using CHOP-INTEND, while 28 (sitters) were tested using the Hammersmith scale. The research protocol consisted of measurements of upper and lower limb ranges of motion, and four tests for early detection of musculoskeletal changes. Both non-sitters and sitters patients showed motor improvement between the first and second examinations. Favorable changes in range of motion parameters were noted in most children, except for hip extension (HE) range, which deteriorated. An association was also observed between scale scores and the presence of contractures in the hip and knee joints depending on the group studied. Our findings showed that the presence of contractures at the hip and knee joint negatively affected functional improvement as measured by the scale scores.
Collapse
|
10
|
Qiu J, Wu L, Qu R, Jiang T, Bai J, Sheng L, Feng P, Sun J. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front Cell Neurosci 2022; 16:942976. [PMID: 36035257 PMCID: PMC9414009 DOI: 10.3389/fncel.2022.942976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with an incidence of 1/6,000–1/10,000 and is the leading fatal disease among infants. Previously, there was no effective treatment for SMA. The first effective drug, nusinersen, was approved by the US FDA in December 2016, providing hope to SMA patients worldwide. The drug was introduced in the European Union in 2017 and China in 2019 and has so far saved the lives of several patients in most parts of the world. Nusinersen are fixed sequence antisense oligonucleotides with special chemical modifications. The development of nusinersen progressed through major scientific discoveries in medicine, genetics, biology, and other disciplines, wherein several scientists have made substantial contributions. In this article, we will briefly describe the pathogenesis and therapeutic strategies of SMA, summarize the timeline of important scientific findings during the development of nusinersen in a detailed, scientific, and objective manner, and finally discuss the implications of the development of nusinersen for SMA research.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Tao Jiang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jialin Bai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengchao Feng
- Nanjing Antisense Biopharmaceutical Co., Ltd, Nanjing, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Junjie Sun
| |
Collapse
|
11
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
12
|
Zamami Y, Hamano H, Niimura T, Aizawa F, Yagi K, Goda M, Izawa-Ishizawa Y, Ishizawa K. Drug-Repositioning Approaches Based on Medical and Life Science Databases. Front Pharmacol 2021; 12:752174. [PMID: 34790124 PMCID: PMC8591243 DOI: 10.3389/fphar.2021.752174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Drug repositioning is a drug discovery strategy in which an existing drug is utilized as a therapeutic agent for a different disease. As information regarding the safety, pharmacokinetics, and formulation of existing drugs is already available, the cost and time required for drug development is reduced. Conventional drug repositioning has been dominated by a method involving the search for candidate drugs that act on the target molecules of an organism in a diseased state through basic research. However, recently, information hosted on medical information and life science databases have been used in translational research to bridge the gap between basic research in drug repositioning and clinical application. Here, we review an example of drug repositioning wherein candidate drugs were found and their mechanisms of action against a novel therapeutic target were identified via a basic research method that combines the findings retrieved from various medical and life science databases.
Collapse
Affiliation(s)
- Yoshito Zamami
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan.,Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Hirofumi Hamano
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takahiro Niimura
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Fuka Aizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiro Goda
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.,Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|