1
|
Jain RK, Hall CK, Santiso EE. In Silico Structural Comparison of Aromatic and Aliphatic Chiral Peptoid Oligomers. J Phys Chem B 2024; 128:11164-11173. [PMID: 39494622 DOI: 10.1021/acs.jpcb.4c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Atomistic simulations of peptoids have the capability to predict structure-property relationships, depending on the accuracy of the associated force field. This work presents an addendum to the CGenFF-NTOID peptoid force field for aliphatic side chains. We develop parameters for two aliphatic side chains, RN1-tertiary butylethyl glycine (r1tbe) and SN1-tertiary butylethyl glycine (s1tbe). Enhanced sampled (well-tempered metadynamics) atomistic simulations are performed using CGenFF-NTOID to determine the monomer structural preferences for these side chains. The free energy minima attained through these simulations are compared with structural observations obtained from experiments. We also compare the structural preferences of aliphatic s1tbe and aromatic SN1-naphthylethyl glycine (s1ne). This is done through parallel bias metadynamics on monomers and pentamers of s1tbe and s1ne. The structural observations through simulations are also compared with available experimental metrics of the dihedral angles and pitch. The pentamer minima structures are also compared with ab initio optimized structures, which show excellent agreement. This comparison illustrates alternatives to aromatic side chains that can be used to stabilize peptoid secondary structures. The developed parameters help to increase the diversity of peptoid side chains available for materials discovery through computational studies.
Collapse
Affiliation(s)
- Rakshit Kumar Jain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
2
|
Woodward IR, Fromen CA. Recent Developments in Aerosol Pulmonary Drug Delivery: New Technologies, New Cargos, and New Targets. Annu Rev Biomed Eng 2024; 26:307-330. [PMID: 38424089 PMCID: PMC11222059 DOI: 10.1146/annurev-bioeng-110122-010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
There is nothing like a global pandemic to motivate the need for improved respiratory treatments and mucosal vaccines. Stimulated by the COVID-19 pandemic, pulmonary aerosol drug delivery has seen a flourish of activity, building on the prior decades of innovation in particle engineering, inhaler device technologies, and clinical understanding. As such, the field has expanded into new directions and is working toward the efficient delivery of increasingly complex cargos to address a wider range of respiratory diseases. This review seeks to highlight recent innovations in approaches to personalize inhalation drug delivery, deliver complex cargos, and diversify the targets treated and prevented through pulmonary drug delivery. We aim to inform readers of the emerging efforts within the field and predict where future breakthroughs are expected to impact the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Ian R Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| |
Collapse
|
3
|
Saikia BK, Roy K, Konwar R. Preliminary report on therapeutic potential of coal-derived carbon quantum dots against SARS-CoV-2 virus. Virology 2024; 593:110036. [PMID: 38432047 DOI: 10.1016/j.virol.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Due to the pandemic of COVID-19 and subsequent emerging of new mutant strains, there has been a worldwide hunt for therapeutic and protective agents for its inhibition. In this short communication, for the first time, we report the coal-derived carbon quantum dot (CQD) for the possible therapeutic application against SARS-CoV-2. The synthesized C1-CQD is observed to be safe towards the normal cell line at highest dose, while effectively inhibiting growth of SARS-CoV2 (>95%) with IC50 value of 5.469 μg/mL. Moreover, C1-CQD showed activity against SARS-CoV-2 infection which is comparable to known inhibitory antiviral drug i.e., Remdesivir. These novel findings indicate that coal-based CQDs have highly potent anti-viral activity and could be investigated further for developing cheap and safer alternative therapeutic strategies for inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Binoy K Saikia
- Coal & Energy Division (C&E), CSIR-North East Institute of Science & Technology, Jorhat, 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kallol Roy
- Centre for Pre-clinical Studies (CPS), CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rituraj Konwar
- Centre for Pre-clinical Studies (CPS), CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Zhang H, Gomika Udugamasooriya D. Linker optimization and activity validation of a cell surface vimentin targeted homo-dimeric peptoid antagonist for lung cancer stem cells. Bioorg Med Chem 2024; 97:117560. [PMID: 38103535 DOI: 10.1016/j.bmc.2023.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) endows epithelia-derived cancer cells with properties of stem cells that govern cancer invasion and metastasis. Vimentin is one of the best studied EMT markers and recent reports indicate that vimentin interestingly translocated onto cell surface under various tumor conditions. We recently reported a cell surface vimentin (CSV) specific peptoid antagonist named JM3A. We now investigated the selective antagonist activity of the optimized homo-dimeric version of JM3A, JM3A-L2D on stem-like cancer cells or cancer stem cells (CSCs) over normal cells in non-small cell lung cancer (NSCLC). Homo-dimerization of JM3A provided the avidity effect and improved the biological activity compared to the monomeric version. We first optimized the central linker length of the dimer by designing seven JM3A derivatives with varying linker lengths/types and evaluated the anti-cancer activity using the standard MTS cell viability assay. The most optimized derivative contains a central lysine linker and two glycines, named JM3A-L2D, which displayed 100 nM vimentin binding affinity (Kd) with an anti-cancer activity (IC50) of 6.7 µM on H1299 NSCLC cells. This is a 190-fold improvement in binding over the original JM3A. JM3A-L2D exhibited better potency on high vimentin-expressing NSCLC cells (H1299 and H460) compared to low vimentin-expressing NSCLC cells (H2122). No activity was observed on normal bronchial HBEC3-KT cells. The anti-CSC activity of JM3A-L2D was evaluated using the standard colony formation assay and JM3A-L2D disrupted the colony formation with IC50 ∼ 400 nM. In addition, JM3A-L2D inhibited cell migration activity at IC50 ∼ 2 µM, assessed via wound healing assay. The underlying mechanism of action seems to be the induction of apoptosis by JM3A-L2D on high-vimentin expressing H1229 and H460 NSCLC cells. Our optimized highly CSV selective peptoid has the potential to be developed as an anti-cancer drug candidate, especially considering the high serum stability and economical synthesis of peptoids.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4349 Martin Luther King Boulevard, Health Building 2, Room 7033, Houston, TX 77204-5037, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4349 Martin Luther King Boulevard, Health Building 2, Room 7033, Houston, TX 77204-5037, USA; Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX 77030-4009, USA.
| |
Collapse
|
5
|
Jain RK, Hall CK, Santiso EE. Using Enhanced Sampling Simulations to Study the Conformational Space of Chiral Aromatic Peptoid Monomers. J Chem Theory Comput 2023; 19:9457-9467. [PMID: 37937823 DOI: 10.1021/acs.jctc.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Peptoids, or N-substituted glycines, are peptide-like materials that form a wide variety of secondary structures owing to their enhanced flexibility and a diverse collection of possible side chains. Compared to that of peptides, peptoids have a substantially more complex conformational landscape. This is mainly due to the ability of the peptoid amide bond to exist in both cis- and trans-conformations. This makes conventional molecular dynamics simulations and even some enhanced sampling approaches unable to sample the complete energy landscapes. In this article, we present an extension to the CGenFF-NTOID peptoid atomistic forcefield by adding parameters for four side chains to the previously available collection. We employ explicit solvent well-tempered metadynamics simulations to optimize our forcefield parameters and parallel bias metadynamics to study the cis-trans isomerism for SN1-phenylethyl (s1pe) and SN1-naphthylethyl (s1ne) peptoid monomers, the free energy minima generated from which are validated with available experimental data. In the absence of experimental data, we supported our atomistic simulations with ab initio calculations. This work represents an important step toward the computational design of peptoid-based materials.
Collapse
Affiliation(s)
- Rakshit Kumar Jain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
6
|
Yang W, Seo J, Kim JH. Protein-mimetic peptoid nanoarchitectures for pathogen recognition and neutralization. NANOSCALE 2023; 15:975-986. [PMID: 36541218 DOI: 10.1039/d2nr05326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent outbreaks of both new and existing infectious pathogens have threatened healthcare systems around the world. Therefore, it is vital to detect and neutralize pathogens to prevent their spread and treat infected patients. This consideration has led to the development of biosensors and antibiotics inspired by the structure and function of antibodies and antimicrobial peptides (AMPs), which constitute adaptive and innate immunity, efficiently protecting the human body against invading pathogens. Herein, we provide an overview of recent advances in the detection and neutralization of pathogens using protein-mimetic peptoid nanoarchitectures. Peptoids are bio-inspired and sequence-defined polymers composed of repeating N-substituted glycine units. They can spontaneously fold into well-defined three-dimensional nanostructures that encode chemical information depending on their sequences. Loop-functionalized peptoid nanosheets have been constructed by mimicking antibodies containing chemically variable loops as binding motifs for their respective target pathogen. Furthermore, by mimicking the cationic amphipathic features of natural AMPs, helical peptoids and their assemblies have been developed to achieve selective anti-infective activity owing to their intrinsic ability to interact with bacterial membranes and viral envelopes. We believe that this mini-review furnishes in-depth insight into how to construct protein-like nanostructures via the self-assembly of peptoids for application in the detection of pathogens and the treatment of infectious diseases for future healthcare applications.
Collapse
Affiliation(s)
- Woojin Yang
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jae Hong Kim
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
7
|
Cho KB, Shukla SP, Kannan M, Zhang H, Amina SJ, Zhou S, Chen Y, Molligan JF, Taneja V, Mohan C, Udugamasooriya DG, Guo B. A peptoid interleukin‐15 receptor antagonist suppresses inflammation and arthritis in mice. Clin Transl Immunology 2022; 11:e1432. [PMCID: PMC9686008 DOI: 10.1002/cti2.1432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To discover a novel peptoid antagonist that targets the interleukin‐15 (IL‐15) receptor and to evaluate its therapeutic efficacy in the treatment of inflammation and arthritis. Methods A new compound (IFRA3, interleukin‐15 receptor antagonist 3) was discovered using a unique on‐bead two‐colour combinatorial cell screening of a peptoid library. The interaction of IFRA3 with IL‐15 receptor was assessed by in vitro pull‐down and thermal shift assays. The efficacy of IFRA3 in treating inflammation and arthritis was evaluated in mouse models. Results IFRA3Q1 (a tetrameric derivative of IFRA3) inhibited the activity of IL‐15 and suppressed CTLL‐2 cell proliferation (which depends on IL‐15 activity). IFRA3Q1 exhibited strong in vivo anti‐inflammatory activity in carrageenan‐induced inflammation in mice. Furthermore, IFRA3Q1 inhibited collagen‐induced arthritis in DBA/1J mice. Conclusion By binding to and inhibiting the function of IL‐15 receptor, IFRA3Q1 exhibited significant anti‐arthritis activity. Our findings suggest that IFRA3Q1 represents a new paradigm for arthritis therapy by targeting IL‐15 signalling.
Collapse
Affiliation(s)
- Kwang Bog Cho
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonHoustonTXUSA
| | - Satya Prakash Shukla
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonHoustonTXUSA
| | - Maheshkumar Kannan
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonHoustonTXUSA
| | - Haowen Zhang
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonHoustonTXUSA
| | - Sundus Jabeen Amina
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonHoustonTXUSA
| | - Shuang Zhou
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonHoustonTXUSA
| | - Yanping Chen
- Department of Biomedical EngineeringUniversity of HoustonHoustonTXUSA
| | | | - Veena Taneja
- Department of Immunology and RheumatologyMayo ClinicRochesterMNUSA
| | - Chandra Mohan
- Department of Biomedical EngineeringUniversity of HoustonHoustonTXUSA
| | | | - Bin Guo
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonHoustonTXUSA
| |
Collapse
|
8
|
Kubiak JZ, Kloc M. Dissecting Physiopathology of COVID-19. Int J Mol Sci 2022; 23:ijms23179602. [PMID: 36076999 PMCID: PMC9456071 DOI: 10.3390/ijms23179602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jacek Z. Kubiak
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35000 Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
- Correspondence: (J.Z.K.); (M.K.)
| | - Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.Z.K.); (M.K.)
| |
Collapse
|
9
|
Shukla SP, Zhang H, Fang B, Minna JD, Gomika Udugamasooriya D. Unbiased peptoid cell screen identifies a peptoid targeting newly appeared cell surface vimentin on tumor transformed early lung cancer cells. Bioorg Med Chem 2022; 58:116673. [PMID: 35189561 PMCID: PMC9040685 DOI: 10.1016/j.bmc.2022.116673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
Abstract
To identify potential new reagents and biomarkers for early lung cancer detection we combined the use of a novel preclinical isogenic model of human lung epithelial cells comparing non-malignant cells with those transformed to full malignancy using defined oncogenic changes and our on-bead two color (red and green stained cells) (OBTC) peptoid combinatorial screening methodology. The preclinical model used normal parent lung epithelial cells (HBEC3-KT, labeled with green dye) and isogenic fully malignant transformed derivatives (labeled with a red dye) via the sequential introduction of key genetic alterations of p53 knockdown, oncogenic KRAS and overexpression of cMYC (HBEC3p53, KRAS, cMYC). Using the unbiased OBTC screening approach, we tested 100,000 different peptoids and identified only one (named JM3A) that bound to the surface of the HBEC3p53, KRAS, cMYC cells (red cells) but not HBEC3-KT cells (green cells). Using the JM3A peptoid and proteomics, we identified the protein bound as vimentin using multiple validation approaches. These all confirmed the cell surface expression of vimentin (CSV) on transformed (HBEC3p53, KRAS, cMYC) but not on untransformed (HBEC3-KT) cells. JM3A coupled with fluorophores was able to detect and stain cell surface vimentin on very early stage lung cancers but not normal lung epithelial cells in a fashion comparable to that using anti-vimentin antibodies. We conclude: using a combined isogenic preclinical model of lung cancer and two color screening of a large peptoid library, we have identified differential expression of cell surface vimentin (CSV) after malignant transformation of lung epithelial cells, and developed a new peptoid reagent (JM3A) for detection of CSV which works well in staining of early stage NSCLCs. This new, highly specific, easy to prepare, CSV detecting JM3A peptoid provides an important new reagent for identifying cancer cells in early stage tumors as well as a resource for detection and isolating of CSV expressing circulating tumor cells.
Collapse
Affiliation(s)
- Satya Prakash Shukla
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Haowen Zhang
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery - Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA; Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX , USA.
| |
Collapse
|