1
|
Guo A, Huang K, Lu Q, Tao B, Li K, Jiang D. TRIM16 facilitates SIRT-1-dependent regulation of antioxidant response to alleviate age-related sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:2056-2070. [PMID: 39192479 PMCID: PMC11446700 DOI: 10.1002/jcsm.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Age-related sarcopenia, characterized by reduced skeletal muscle mass and function, significantly affects the health of the elderly individuals. Oxidative stress plays a crucial role in the development of sarcopenia. Tripartite motif containing 16 (TRIM16) is implicated in orchestrating antioxidant responses to mitigate oxidative stress, yet its regulatory role in skeletal muscle remains unclear. This study aims to elucidate the impact of TRIM16 on enhancing antioxidant response through SIRT-1, consequently mitigating age-related oxidative stress, and ameliorating muscle atrophy. METHODS Aged mouse models were established utilizing male mice at 18 months with D-galactose (D-gal, 200 mg/kg) intervention and at 24 months with natural aging, while 3-month-old young mice served as controls. Muscle cell senescence was induced in C2C12 myoblasts using 30 g/L D-gal. TRIM16 was overexpressed in the skeletal muscle of aged mice and silenced/overexpressed in C2C12 myoblasts. The effects of TRIM16 on skeletal muscle mass, grip strength, morphological changes, myotube formation, myogenic differentiation, and muscle atrophy indicators were evaluated. Reactive oxygen species (ROS) levels and oxidative stress-related parameters were measured. The SIRT-1 inhibitor EX-527 was employed to elucidate the protective role of TRIM16 mediated through SIRT-1. RESULTS Aged mice displayed significant reductions in lean mass (-11.58%; -14.47% vs. young, P < 0.05), hindlimb lean mass (-17.38%; -15.95% vs. young, P < 0.05), and grip strength (-22.29%; -31.45% vs. young, P < 0.01). Skeletal muscle fibre cross-sectional area (CSA) decreased (-29.30%; -24.12% vs. young, P < 0.05). TRIM16 expression significantly decreased in aging skeletal muscle (-56.82%; -66.27% vs. young, P < 0.001) and senescent muscle cells (-46.53% vs. control, P < 0.001). ROS levels increased (+69.83% vs. control, P < 0.001), and myotube formation decreased in senescent muscle cells (-56.68% vs. control, P < 0.001). Expression of myogenic differentiation and antioxidant indicators decreased, while muscle atrophy markers increased in vivo and in vitro (all P < 0.05). Silencing TRIM16 in myoblasts induced oxidative stress and myotube atrophy, while TRIM16 overexpression partially mitigated aging effects on skeletal muscle. TRIM16 activation enhanced SIRT-1 expression (+75.38% vs. control, P < 0.001). SIRT-1 inhibitor EX-527 (100 μM) suppressed TRIM16's antioxidant response and mitigating muscle atrophy, offsetting the protective effect of TRIM16 on senescent muscle cells. CONCLUSIONS This study elucidates TRIM16's role in mitigating oxidative stress and ameliorating muscle atrophy through the activation of SIRT-1-dependent antioxidant effects. TRIM16 emerges as a potential therapeutic target for age-related sarcopenia.
Collapse
Affiliation(s)
- Ai Guo
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Huang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quanyi Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Hwangbo H, Park C, Bang E, Kim HS, Bae SJ, Kim E, Jung Y, Leem SH, Seo YR, Hong SH, Kim GY, Hyun JW, Choi YH. Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress. Biomol Ther (Seoul) 2024; 32:349-360. [PMID: 38602043 PMCID: PMC11063479 DOI: 10.4062/biomolther.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngmi Jung
- Department of Biological Sciences, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang 10326, Republic of Korea
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| |
Collapse
|
3
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
4
|
Nuccio A, Nogueira-Ferreira R, Moreira-Pais A, Attanzio A, Duarte JA, Luparello C, Ferreira R. The contribution of mitochondria to age-related skeletal muscle wasting: A sex-specific perspective. Life Sci 2024; 336:122324. [PMID: 38042281 DOI: 10.1016/j.lfs.2023.122324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.
Collapse
Affiliation(s)
- Alessandro Nuccio
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Rita Nogueira-Ferreira
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal.
| | - Alexandra Moreira-Pais
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal; Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Huang J, Zhang X, Hong Z, Lin X, Chen F, Lan J, Zhang Z, Deng H. Associations of plasma retinol and α-tocopherol levels with skeletal muscle health in Chinese children. Br J Nutr 2023; 130:2174-2181. [PMID: 37341020 DOI: 10.1017/s0007114523001265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Childhood is a critical period for muscle accumulation. Studies in elders have reported that antioxidant vitamins could improve muscle health. However, limited studies have assessed such associations in children. This study included 243 boys and 183 girls. A seventy-nine-item FFQ was used to investigate dietary nutrients intake. Plasma levels of retinol and α-tocopherol were measured using high-performance liquid chromatography with MS. Dual X-ray absorptiometry was used to assess appendicular skeletal muscle mass (ASM) and total body fat. The ASM index (ASMI) and ASMI Z-score were then calculated. Hand grip strength was measured using a Jamar® Plus+ Hand Dynamometer. Fully adjusted multiple linear regression models showed that for each unit increase in plasma retinol content, ASM, ASMI, left HGS and ASMI Z-score increased by 2·43 × 10-3 kg, 1·33 × 10-3 kg/m2, 3·72 × 10-3 kg and 2·45 × 10-3 in girls, respectively (P < 0·001-0·050). ANCOVA revealed a dose-response relationship between tertiles of plasma retinol level and muscle indicators (Ptrend: 0·001-0·007). The percentage differences between the top and bottom tertiles were 8·38 %, 6·26 %, 13·2 %, 12·1 % and 116 % for ASM, ASMI, left HGS, right HGS and ASMI Z-score in girls, respectively (Pdiff: 0·005-0·020). No such associations were observed in boys. Plasma α-tocopherol levels were not correlated with muscle indicators in either sex. In conclusion, high circulating retinol levels are positively associated with muscle mass and strength in school-age girls.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| | - Xuanrui Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| | - Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| | - Xiaoping Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| | - Fengyan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| | - Jing Lan
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| | - Hong Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou510400, People's Republic of China
| |
Collapse
|
6
|
Zhao Y, Nogueira MS, Chen Q, Dai Q, Cai Q, Wen W, Lan Q, Rothman N, Gao YT, Shu XO, Zheng W, Milne GL, Yang G. Association between F2-Isoprostane Metabolites and Weight Change in Older Women: A Longitudinal Analysis. Gerontology 2023; 70:134-142. [PMID: 37967546 PMCID: PMC10922451 DOI: 10.1159/000534258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION Theoretically, some metabolic traits may predispose older individuals to weight loss during aging, leading to increased all-cause mortality and many serious health issues. Biomarkers to robustly predict progressive weight loss during aging are, however, lacking. We prospectively assessed if urinary levels of F2-isoprostanes and their peroxisomal β-oxidation metabolite, 2,3-dinor-5,6-dihydro-15-F2t-isoprostane (F2-IsoP-M), were associated with subsequent weight loss in middle-aged and older women. METHODS Included in the analysis were 2,066 women aged 40-70 years, a subset of a prospective cohort study. F2-isoprostanes (F2-IsoPs) and its β-oxidation metabolite, F2-IsoP-M, were measured in urine using gas chromatography-mass spectrometry. Measurements of anthropometry and exposures to major determinants of body weight were performed at baseline and repeated thrice over 15-year follow-up. The longitudinal associations of F2-IsoP-M and the F2-IsoP-M to its parent compound, F2-IsoP, ratio (MPR) with repeatedly measured weight changes were examined using linear mixed-effect models. RESULTS After adjusting for time-varying covariates: energy intake, physical activity, and comorbidity index, among others, levels of F2-IsoP-M and the MPR were both inversely associated with percentage of weight change. Weight in the highest quartile of these two biomarkers was 1.33% (95% CI = -2.41, -0.24) and 1.09% (95% CI = -2.16, -0.02) lower than those in the lowest quartile group, with p for trend of 0.01 and 0.03, respectively. The inverse association was consistently seen across follow-up periods, although appearing stronger with prolonged follow-up. There was no association between the parent compound, F2-IsoPs, and weight change. CONCLUSION This study demonstrates the first piece of evidence to associate F2-IsoP metabolism, peroxisomal β-oxidation, with weight loss in older women. Further investigations into the role of lipid peroxidation and peroxisomal β-oxidation in weight change among older individuals are warranted.
Collapse
Affiliation(s)
- Yingya Zhao
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Marina S. Nogueira
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
- Division of Clinical Pharmacology, Department of Medicine,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qingxia Chen
- Department of Biostatistics, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Qi Dai
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational
and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD,
USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational
and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD,
USA
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Renji Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine,
Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gong Yang
- Division of Epidemiology, Department of Medicine,
Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt
University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Talib NF, Zhu Z, Kim KS. Vitamin D3 Exerts Beneficial Effects on C2C12 Myotubes through Activation of the Vitamin D Receptor (VDR)/Sirtuins (SIRT)1/3 Axis. Nutrients 2023; 15:4714. [PMID: 38004107 PMCID: PMC10674540 DOI: 10.3390/nu15224714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The onset of sarcopenia is associated with a decline in vitamin D receptor (VDR) expression, wherein reduced VDR levels contribute to muscle atrophy, while heightened expression promotes muscle hypertrophy. Like VDR, the age-related decline in protein deacetylase sirtuin (SIRT) expression is linked to the development of sarcopenia and age-related muscle dysfunction. This study aimed to investigate whether the VDR agonist 1,25-dihydroxyvitamin D3 (1,25VD3) exerts beneficial effects on muscles through interactions with sirtuins and, if so, the underlying molecular mechanisms. Treatment of 1,25VD3 in differentiating C2C12 myotubes substantially elevated VDR, SIRT1, and SIRT3 expression, enhancing their differentiation. Furthermore, 1,25VD3 significantly enhanced the expression of key myogenic markers, including myosin heavy chain (MyHC) proteins, MyoD, and MyoG, and increased the phosphorylation of AMPK and AKT. Conversely, VDR knockdown resulted in myotube atrophy and reduced SIRT1 and SIRT3 levels. In a muscle-wasting model triggered by IFN-γ/TNF-α in C2C12 myotubes, diminished VDR, SIRT1, and SIRT3 levels led to skeletal muscle atrophy and apoptosis. 1,25VD3 downregulated the increased expression of muscle atrophy-associated proteins, including FoxO3a, MAFbx, and MuRF1 in an IFN-γ/TNF-α induced atrophy model. Importantly, IFN-γ/TNF-α significantly reduced the mtDNA copy number in the C2C12 myotube, whereas the presence of 1,25VD3 effectively prevented this decrease. These results support that 1,25VD3 could serve as a potential preventive or therapeutic agent against age-related muscle atrophy by enhancing the VDR/SIRT1/SIRT3 axis.
Collapse
Affiliation(s)
- Nurul Fatihah Talib
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Zunshu Zhu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Kyoung-Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
8
|
Ghzaiel I, Zarrouk A, Pires V, de Barros JPP, Hammami S, Ksila M, Hammami M, Ghrairi T, Jouanny P, Vejux A, Lizard G. 7β-Hydroxycholesterol and 7-ketocholesterol: New oxidative stress biomarkers of sarcopenia inducing cytotoxic effects on myoblasts and myotubes. J Steroid Biochem Mol Biol 2023; 232:106345. [PMID: 37286110 DOI: 10.1016/j.jsbmb.2023.106345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7β-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7β-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7β-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7β-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7β-hydroxycholesterol, and IL-8 secretion was increased on differentiated cells. 7-ketocholesterol- and 7β-hydroxycholesterol-induced cell death was strongly attenuated by α-tocopherol and Pistacia lentiscus L. seed oil both on myoblasts and/or myotubes. TNF-α and/or IL-8 secretions were reduced by α-tocopherol and Pistacia lentiscus L. seed oil. Our data support the hypothesis that the enhancement of oxidative stress observed in sarcopenic patients could contribute, especially via 7β-hydroxycholesterol, to skeletal muscle atrophy and inflammation via cytotoxic effects on myoblasts and myotubes. These data bring new elements to understand the pathophysiology of sarcopenia and open new perspectives for the treatment of this frequent age-related disease.
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France; Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia.
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France
| | | | - Sonia Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - Mohamed Ksila
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France; Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
| | - Taoufik Ghrairi
- Université de Bourgogne, Lipidomic Platform, 21000 Dijon, France
| | - Pierre Jouanny
- Geriatric Internal Medicine Department (Champmaillot), University Hospital Center, Université de Bourgogne, 21000 Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, Université de Bourgogne, 21000 Dijon, France.
| |
Collapse
|
9
|
Ispoglou T, Wilson O, McCullough D, Aldrich L, Ferentinos P, Lyall G, Stavropoulos-Kalinoglou A, Duckworth L, Brown MA, Sutton L, Potts AJ, Archbold V, Hargreaves J, McKenna J. A Narrative Review of Non-Pharmacological Strategies for Managing Sarcopenia in Older Adults with Cardiovascular and Metabolic Diseases. BIOLOGY 2023; 12:892. [PMID: 37508325 PMCID: PMC10376679 DOI: 10.3390/biology12070892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
This narrative review examines the mechanisms underlying the development of cardiovascular disease (CVD) and metabolic diseases (MDs), along with their association with sarcopenia. Furthermore, non-pharmacological interventions to address sarcopenia in patients with these conditions are suggested. The significance of combined training in managing metabolic disease and secondary sarcopenia in type II diabetes mellitus is emphasized. Additionally, the potential benefits of resistance and aerobic training are explored. This review emphasises the role of nutrition in addressing sarcopenia in patients with CVD or MDs, focusing on strategies such as optimising protein intake, promoting plant-based protein sources, incorporating antioxidant-rich foods and omega-3 fatty acids and ensuring sufficient vitamin D levels. Moreover, the potential benefits of targeting gut microbiota through probiotics and prebiotic fibres in sarcopenic individuals are considered. Multidisciplinary approaches that integrate behavioural science are explored to enhance the uptake and sustainability of behaviour-based sarcopenia interventions. Future research should prioritise high-quality randomized controlled trials to refine exercise and nutritional interventions and investigate the incorporation of behavioural science into routine practices. Ultimately, a comprehensive and multifaceted approach is essential to improve health outcomes, well-being and quality of life in older adults with sarcopenia and coexisting cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Luke Aldrich
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Gemma Lyall
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Lauren Duckworth
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Meghan A Brown
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Louise Sutton
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Alexandra J Potts
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Victoria Archbold
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jackie Hargreaves
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jim McKenna
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| |
Collapse
|
10
|
Tobias-Wallingford H, Coppotelli G, Ross JM. Mitochondria in Ageing and Diseases: Partie Deux. Int J Mol Sci 2023; 24:10359. [PMID: 37373506 PMCID: PMC10299635 DOI: 10.3390/ijms241210359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The past several decades has seen a huge expansion of the knowledge and research of mitochondrial dysfunction and the role it plays in ageing and age-related diseases [...].
Collapse
Affiliation(s)
- Hannah Tobias-Wallingford
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M. Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
11
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
12
|
Gharpure M, Chen J, Nerella R, Vyavahare S, Kumar S, Isales CM, Hamrick M, Adusumilli S, Fulzele S. Sex-specific alteration in human muscle transcriptome with age. GeroScience 2023:10.1007/s11357-023-00795-5. [PMID: 37106281 PMCID: PMC10400750 DOI: 10.1007/s11357-023-00795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Sarcopenia is a medical condition that progressively develops with age and results in reduced skeletal muscle mass, alteration in muscle composition, and decreased muscle strength. Several clinical studies suggested that sarcopenia disproportionally affects males and females with age. Despite this knowledge, the molecular mechanism governing the pathophysiology is not well understood in a sex-specific manner. In this study, we utilized human gastrocnemius muscles from males and females to identify differentially regulated genes with age. We found 269 genes with at least a twofold expression difference in the aged muscle transcriptome. Among the female muscle samples, there were 239 differentially regulated genes, and the novel protein-coding genes include KIF20A, PIMREG, MTRNR2L6, TRPV6, EFNA2, RNF24, and SFN. In aged male skeletal muscle, there were 166 differentially regulated genes, and the novel-protein coding genes are CENPK, CDKN2A, BHLHA15, and EPHA. Gene Ontology (GO) enrichment revealed glucose catabolism, NAD metabolic processes, and muscle fiber transition pathways that are involved in aged female skeletal muscle, whereas replicative senescence, cytochrome C release, and muscle composition pathways are disrupted in aged male skeletal muscle. Targeting these novels, differentially regulated genes, and signaling pathways could serve as sex-specific therapeutic targets to combat the age-related onset of sarcopenia and promote healthy aging.
Collapse
Affiliation(s)
- Mohini Gharpure
- Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
| | - Jie Chen
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Resheek Nerella
- Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
- Augusta University, Augusta, GA, 30912, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
| | - Sandeep Kumar
- Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
| | - Carlos M Isales
- Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Mark Hamrick
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
13
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
14
|
Mendes S, Leal DV, Baker LA, Ferreira A, Smith AC, Viana JL. The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24076017. [PMID: 37046990 PMCID: PMC10094245 DOI: 10.3390/ijms24076017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Kidney Disease (CKD) is a global health burden with high mortality and health costs. CKD patients exhibit lower cardiorespiratory and muscular fitness, strongly associated with morbidity/mortality, which is exacerbated when they reach the need for renal replacement therapies (RRT). Muscle wasting in CKD has been associated with an inflammatory/oxidative status affecting the resident cells' microenvironment, decreasing repair capacity and leading to atrophy. Exercise may help counteracting such effects; however, the molecular mechanisms remain uncertain. Thus, trying to pinpoint and understand these mechanisms is of particular interest. This review will start with a general background about myogenesis, followed by an overview of the impact of redox imbalance as a mechanism of muscle wasting in CKD, with focus on the modulatory effect of exercise on the skeletal muscle microenvironment.
Collapse
Affiliation(s)
- Sara Mendes
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Luke A Baker
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Aníbal Ferreira
- Nova Medical School, 1169-056 Lisbon, Portugal
- NephroCare Portugal SA, 1750-233 Lisbon, Portugal
| | - Alice C Smith
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| |
Collapse
|
15
|
Köller M. Sarcopenia-a geriatric pandemic : A narrative review. Wien Med Wochenschr 2023; 173:97-103. [PMID: 35416610 DOI: 10.1007/s10354-022-00927-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
With growing life expectancy, the prevalence of frailty and sarcopenia will continuously increase during the next decades. Geographical differences have been described, and depending on the population studied, sarcopenia is evident in 10% of community-dwelling people, increasing up to 40 to 50% among those living in nursing homes. Sarcopenia is a complex age-related process of multifactorial pathogenesis, influenced by lifestyle, nutrition, biological processes during aging, and also immunological and endocrine mechanisms. For diagnostic criteria, physical parameters (muscle mass measurement) and functional aspects (muscle strength, gait speed, physical performance) are required. In routine clinical care, screening patients using the SARC‑F questionnaire is recommended by recent guidelines of the European Workgroup for Sarcopenia.
Collapse
Affiliation(s)
- Marcus Köller
- Dept. Acute Geriatric Care, Clinic Favoriten, Kudratstraße 3, 1100, Vienna, Austria.
| |
Collapse
|
16
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
17
|
Minniti G, Pescinini-Salzedas LM, Minniti GADS, Laurindo LF, Barbalho SM, Vargas Sinatora R, Sloan LA, Haber RSDA, Araújo AC, Quesada K, Haber JFDS, Bechara MD, Sloan KP. Organokines, Sarcopenia, and Metabolic Repercussions: The Vicious Cycle and the Interplay with Exercise. Int J Mol Sci 2022; 23:13452. [PMID: 36362238 PMCID: PMC9655425 DOI: 10.3390/ijms232113452] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Sarcopenia is a disease that becomes more prevalent as the population ages, since it is directly linked to the process of senility, which courses with muscle atrophy and loss of muscle strength. Over time, sarcopenia is linked to obesity, being known as sarcopenic obesity, and leads to other metabolic changes. At the molecular level, organokines act on different tissues and can improve or harm sarcopenia. It all depends on their production process, which is associated with factors such as physical exercise, the aging process, and metabolic diseases. Because of the seriousness of these repercussions, the aim of this literature review is to conduct a review on the relationship between organokines, sarcopenia, diabetes, and other metabolic repercussions, as well the role of physical exercise. To build this review, PubMed-Medline, Embase, and COCHRANE databases were searched, and only studies written in English were included. It was observed that myokines, adipokines, hepatokines, and osteokines had direct impacts on the pathophysiology of sarcopenia and its metabolic repercussions. Therefore, knowing how organokines act is very important to know their impacts on age, disease prevention, and how they can be related to the prevention of muscle loss.
Collapse
Affiliation(s)
- Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- School of Food and Technology of Marilia (FATEC), Marilia 17506-000, SP, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA
- Department of Internal Medicine, University of Texas Medical Branch-Galveston, Galveston, TX 75904, USA
| | - Rafael Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Jesselina F. dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | | |
Collapse
|
18
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
19
|
Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7483911. [PMID: 36147639 PMCID: PMC9489359 DOI: 10.1155/2022/7483911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Background Sarcopenia is a common chronic disease characterized by age-related decline in skeletal muscle mass and function, and the lack of diagnostic biomarkers makes community-based screening problematic. Methods Three gene expression profiles related with sarcopenia were downloaded and merged by searching the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and eigengenes of a module in the merged dataset were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA), and common genes (CGs) were defined as the intersection of DEGs and eigengenes of a module. CGs were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen the CGs for identifying the diagnostic biomarkers of sarcopenia. Based on the diagnostic biomarkers, we established a novel nomogram model of sarcopenia. At last, we validated the diagnostic biomarkers and evaluated the diagnostic performance of the nomogram model by the area under curve (AUC) value. Results We screened out 107 DEGs and 788 eigengenes in the turquoise module, and 72 genes were selected as CGs of sarcopenia by intersection. GO analysis showed that CGs were mainly involved in metal ion detoxification and mitochondrial structure, and KEGG analysis revealed that CGs were mainly enriched in the mineral absorption, glucagon signaling pathway, FoxO signaling pathway, insulin signaling pathway, AMPK signaling pathway, and estrogen signaling pathway. Then, six diagnostic biomarkers (ARHGAP36, FAM171A1, GPCPD1, MT1X, ZNF415, and RXRG) were identified by LASSO analysis. Finally, the validation AUC values indicated that the six diagnostic biomarkers had high diagnostic accuracy for sarcopenia. Conclusion We identified six diagnostic biomarkers with high diagnostic performance, providing new insights into the incidence and progression of sarcopenia in future research.
Collapse
|
20
|
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol 2022; 10:964130. [PMID: 36111339 PMCID: PMC9470179 DOI: 10.3389/fcell.2022.964130] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/06/2022] Open
Abstract
With aging, the progressive loss of skeletal muscle will have negative effect on multiple physiological parameters, such as exercise, respiration, thermoregulation, and metabolic homeostasis. Accumulating evidence reveals that oxidative stress and inflammation are the main pathological characteristics of skeletal muscle during aging. Here, we focus on aging-related sarcopenia, summarize the relationship between aging and sarcopenia, and elaborate on aging-mediated oxidative stress and oxidative damage in skeletal muscle and its critical role in the occurrence and development of sarcopenia. In addition, we discuss the production of excessive reactive oxygen species in aging skeletal muscle, which reduces the ability of skeletal muscle satellite cells to participate in muscle regeneration, and analyze the potential molecular mechanism of ROS-mediated mitochondrial dysfunction in aging skeletal muscle. Furthermore, we have also paid extensive attention to the possibility and potential regulatory pathways of skeletal muscle aging and oxidative stress mediate inflammation. Finally, in response to the abnormal activity of oxidative stress and inflammation during aging, we summarize several potential antioxidant and anti-inflammatory strategies for the treatment of sarcopenia, which may provide beneficial help for improving sarcopenia during aging.
Collapse
Affiliation(s)
- Mingming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyi Wang
- Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Lin’an, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| |
Collapse
|
21
|
Yu J, Loh K, Yang HQ, Du MR, Wu YX, Liao ZY, Guo A, Yang YF, Chen B, Zhao YX, Chen JL, Zhou J, Sun Y, Xiao Q. The Whole-transcriptome Landscape of Diabetes-related Sarcopenia Reveals the Specific Function of Novel lncRNA Gm20743. Commun Biol 2022; 5:774. [PMID: 35915136 PMCID: PMC9343400 DOI: 10.1038/s42003-022-03728-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/15/2022] [Indexed: 11/11/2022] Open
Abstract
While the exact mechanism remains unclear, type 2 diabetes mellitus increases the risk of sarcopenia which is characterized by decreased muscle mass, strength, and function. Whole-transcriptome RNA sequencing and informatics were performed on the diabetes-induced sarcopenia model of db/db mice. To determine the specific function of lncRNA Gm20743, the detection of Mito-Sox, reactive oxygen species, Ethynyl-2′-deoxyuridine, and myosin heavy chain was performed in overexpressed and knockdown-Gm20743 C2C12 cells. RNA-seq data and informatics revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. We characterized three core candidate lncRNAs Gm20743, Gm35438, 1700047G03Rik, and their potential function. Furthermore, the results suggested lncRNA Gm20743 may be involved in regulating mitochondrial function, oxidative stress, cell proliferation, and myotube differentiation in skeletal muscle cells. These findings significantly improve our understanding of lncRNAs that may mediate muscle mass, strength, and function in diabetes and represent potential therapeutic targets for diabetes-induced sarcopenia. The role of lncRNA Gm20743 in the development of diabetic sarcopenia is explored using a mouse model.
Collapse
Affiliation(s)
- Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kim Loh
- Diabetes & Metabolic Disease Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, Australia
| | - He-Qin Yang
- Health Outcome Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Meng-Ran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong-Xin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Yin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-Fei Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu-Xing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Wu Y, Wu Y, Yang Y, Yu J, Wu J, Liao Z, Guo A, Sun Y, Zhao Y, Chen J, Xiao Q. Lysyl oxidase-like 2 inhibitor rescues D-galactose-induced skeletal muscle fibrosis. Aging Cell 2022; 21:e13659. [PMID: 35712918 PMCID: PMC9282848 DOI: 10.1111/acel.13659] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022] Open
Abstract
Aging-related sarcopenia is currently the most common sarcopenia. The main manifestations are skeletal muscle atrophy, replacement of muscle fibers with fat and fibrous tissue. Excessive fibrosis can impair muscle regeneration and function. Lysyl oxidase-like 2 (LOXL2) has previously been reported to be involved in the development of various tissue fibrosis. Here, we investigated the effects of LOXL2 inhibitor on D-galactose (D-gal)-induced skeletal muscle fibroblast cells and mice. Our molecular and physiological studies show that treatment with LOXL2 inhibitor can alleviate senescence, fibrosis, and increased production of reactive oxygen species in fibroblasts caused by D-gal. These effects are related to the inhibition of the TGF-β1/p38 MAPK pathway. Furthermore, in vivo, mice treatment with LOXL2 inhibitor reduced D-gal-induced skeletal muscle fibrosis, partially enhanced skeletal muscle mass and strength and reduced redox balance disorder. Taken together, these data indicate the possibility of using LOXL2 inhibitors to prevent aging-related sarcopenia, especially with significant fibrosis.
Collapse
Affiliation(s)
- Yongxin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaoxuan Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianghao Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
The Inhibitory Effect of Corni Fructus against Oxidative Stress-induced Cellular Damage in C2C12 Murine Myoblasts. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Bauckneht M, Lai R, D'Amico F, Miceli A, Donegani MI, Campi C, Schenone D, Raffa S, Chiola S, Lanfranchi F, Rebuzzi SE, Zanardi E, Cremante M, Marini C, Fornarini G, Morbelli S, Piana M, Sambuceti G. Opportunistic skeletal muscle metrics as prognostic tools in metastatic castration-resistant prostate cancer patients candidates to receive Radium-223. Ann Nucl Med 2022; 36:373-383. [PMID: 35044592 PMCID: PMC8938339 DOI: 10.1007/s12149-022-01716-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Androgen deprivation therapy alters body composition promoting a significant loss in skeletal muscle (SM) mass through inflammation and oxidative damage. We verified whether SM anthropometric composition and metabolism are associated with unfavourable overall survival (OS) in a retrospective cohort of metastatic castration-resistant prostate cancer (mCRPC) patients submitted to 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) imaging before receiving Radium-223. PATIENTS AND METHODS Low-dose CT were opportunistically analysed using a cross-sectional approach to calculate SM and adipose tissue areas at the third lumbar vertebra level. Moreover, a 3D computational method was used to extract psoas muscles to evaluate their volume, Hounsfield Units (HU) and FDG retention estimated by the standardized uptake value (SUV). Baseline established clinical, lab and imaging prognosticators were also recorded. RESULTS SM area predicted OS at univariate analysis. However, this capability was not additive to the power of mean HU and maximum SUV of psoas muscles volume. These factors were thus combined in the Attenuation Metabolic Index (AMI) whose power was tested in a novel uni- and multivariable model. While Prostate-Specific Antigen (PSA), Alkaline Phosphatase (ALP), Lactate Dehydrogenase and Hemoglobin, Metabolic Tumor Volume, Total Lesion Glycolysis and AMI were associated with long-term OS at the univariate analyses, only PSA, ALP and AMI resulted in independent prognosticator at the multivariate analysis. CONCLUSION The present data suggest that assessing individual 'patients' SM metrics through an opportunistic operator-independent computational analysis of FDG PET/CT imaging provides prognostic insights in mCRPC patients candidates to receive Radium-223.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy.
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Rita Lai
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
| | - Francesca D'Amico
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Alberto Miceli
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | | | - Cristina Campi
- LISCOMP, Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
| | - Daniela Schenone
- LISCOMP, Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Silvia Chiola
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Sara Elena Rebuzzi
- Medical Oncology, Ospedale San Paolo, Savona, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genoa, Italy
| | - Elisa Zanardi
- Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Bioimaging and Physiology (IBFM), CNR Institute of Molecular, Segrate, Milan, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Morbelli
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Michele Piana
- LISCOMP, Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
- CNR-SPIN Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
25
|
González-Jamett A, Vásquez W, Cifuentes-Riveros G, Martínez-Pando R, Sáez JC, Cárdenas AM. Oxidative Stress, Inflammation and Connexin Hemichannels in Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10020507. [PMID: 35203715 PMCID: PMC8962419 DOI: 10.3390/biomedicines10020507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle muscular dystrophy. These and other MDs are caused by mutations in genes that encode proteins responsible for the structure and function of skeletal muscles, such as components of the dystrophin-glycoprotein-complex that connect the sarcomeric-actin with the extracellular matrix, allowing contractile force transmission and providing stability during muscle contraction. Consequently, in dystrophic conditions in which such proteins are affected, muscle integrity is disrupted, leading to local inflammatory responses, oxidative stress, Ca2+-dyshomeostasis and muscle degeneration. In this scenario, dysregulation of connexin hemichannels seem to be an early disruptor of the homeostasis that further plays a relevant role in these processes. The interaction between all these elements constitutes a positive feedback loop that contributes to the worsening of the diseases. Thus, we discuss here the interplay between inflammation, oxidative stress and connexin hemichannels in the progression of MDs and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
- Correspondence: (A.G.-J.); (A.M.C.)
| | - Walter Vásquez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Gabriela Cifuentes-Riveros
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Rafaela Martínez-Pando
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Correspondence: (A.G.-J.); (A.M.C.)
| |
Collapse
|
26
|
Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne) 2022; 13:811751. [PMID: 35250869 PMCID: PMC8892203 DOI: 10.3389/fendo.2022.811751] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenic obesity is defined as a multifactorial disease in aging with decreased body muscle, decreased muscle strength, decreased independence, increased fat mass, due to decreased physical activity, changes in adipokines and myokines, and decreased satellite cells. People with sarcopenic obesity cause harmful changes in myokines and adipokines. These changes are due to a decrease interleukin-10 (IL-10), interleukin-15 (IL-15), insulin-like growth factor hormone (IGF-1), irisin, leukemia inhibitory factor (LIF), fibroblast growth factor-21 (FGF-21), adiponectin, and apelin. While factors such as myostatin, leptin, interleukin-6 (IL-6), interleukin-8 (IL-8), and resistin increase. The consequences of these changes are an increase in inflammatory factors, increased degradation of muscle proteins, increased fat mass, and decreased muscle tissue, which exacerbates sarcopenia obesity. In contrast, exercise, especially strength training, reverses this process, which includes increasing muscle protein synthesis, increasing myogenesis, increasing mitochondrial biogenesis, increasing brown fat, reducing white fat, reducing inflammatory factors, and reducing muscle atrophy. Since some people with chronic diseases are not able to do high-intensity strength training, exercises with blood flow restriction (BFR) are newly recommended. Numerous studies have shown that low-intensity BFR training produces the same increase in hypertrophy and muscle strength such as high-intensity strength training. Therefore, it seems that exercise interventions with BFR can be an effective way to prevent the exacerbation of sarcopenia obesity. However, due to limited studies on adipokines and exercises with BFR in people with sarcopenic obesity, more research is needed.
Collapse
|