1
|
Korolenko A, Skinner MK. Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution. Epigenetics 2024; 19:2380929. [PMID: 39104183 PMCID: PMC11305060 DOI: 10.1080/15592294.2024.2380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).
Collapse
Affiliation(s)
- Alexandra Korolenko
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Zhang Y, Xu D, Song S, Wang G, Su H, Wu Y, Zhang Y, Liu H, Li Q, Wang X, Yu Z, Liu X. AKT/mTOR-mediated autophagic signaling is associated with TCDD-induced cleft palate. Reprod Toxicol 2024; 130:108731. [PMID: 39401686 DOI: 10.1016/j.reprotox.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
In utero exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can contribute to high rates of cleft palate (CP) formation, but the mechanistic basis for these effects remains uncertain. Here, multi-omics-based metabolomic and transcriptomic analyses were employed to characterize the etiological basis for TCDD-induced CP on gestational day 14.5 (GD14.5). These analyses revealed that TCDD-induced CP formation is associated with calcium, MAPK, PI3K-Akt, and mTOR pathway signaling. PI3K-Akt and mTOR signaling activity is closely linked with the maintenance of cellular proliferation and survival. Moreover, mTOR-mediated regulation of autophagic activity is essential for ensuring an appropriate balance between metabolic activity and growth. Murine embryonic palatal mesenchymal (MEPM) cell proliferation was thus characterized, autophagic activity in these cells was evaluated through electron microscopy and western immunoblotting was used to compare the levels of autophagy- and AKT/mTOR-related protein between the control and TCDD groups on GD14.5. These analyses indicated that MEPM cell proliferative and autophagic activity was inhibited in response to TCDD exposure with the concomitant activation of AKT/mTOR signaling, in line with the multi-omics data. Together, these findings suggested that following TCDD exposure, the activation of AKT/mTOR-related autophagic signaling may play a role in the loss of appropriate palatal cell homeostasis, culminating in the incidence of CP.
Collapse
Affiliation(s)
- Yaxin Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Dongliang Xu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Prosthodontics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Shuaixing Song
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Guoxu Wang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qingfu Li
- Department of Prosthodontics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiangdong Wang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China.
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
3
|
Shi Z, Li Y, Song X, Wang Y, Li J, Wei S. The burden of cancer attributable to dietary dioxins and dioxin-like compounds exposure in China, 2000-2020. ENVIRONMENT INTERNATIONAL 2024; 194:109080. [PMID: 39579443 DOI: 10.1016/j.envint.2024.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 11/25/2024]
Abstract
Dioxin is a typical class of persistent organic pollutants (POPs) that could cause cancer. In China, the contribution of dietary dioxins to the cancer burden remains underexplored. This study evaluates the cancer risk and burden due to dietary dioxins and dioxin-like compounds among Chinese residents from 2000 to 2020. Based on adjustments in China's dioxin policies, the study period was divided into three stages with split years of 2007 and 2014 to estimate the toxic equivalent (TEQ) of dioxins. Participants in dietary surveys conducted in 31 provinces were included. Dietary exposure to dioxins was estimated in a probability model and compared with the provisional tolerable monthly intake (PTMI). The risk was assessed using carcinogenic slope factors and expressed as the incremental lifetime cancer risk (ILCR). A two-stage model evaluated the burden of cancer attributable to dietary dioxins and dioxin-like compounds. Among all food categories, the highest concentration of dioxins and dioxin-like compounds was observed in aquatic foods at 0.15 pg TEQ/kg. Median dietary exposure to dioxins among Chinese residents decreased from 12.39 pg TEQ/kg/month to 8.72 pg TEQ/kg/month between 2000 and 2020. Consequently, the ILCR due to dietary dioxins declined from 6.44 × 10-5 to 4.53 × 10-5. The health risks were higher in younger groups and among residents of coastal areas (P < 0.001). The burden of cancer attributable to dietary intake of dioxins and dioxin-like compounds in the Chinese population in 2000-2007, 2008-2014, and 2015-2020 was 2.25 (2.09-2.42) per 100,000, 2.20 (2.06-2.35) per 100,000, and 1.68 (1.60-1.77) per 100,000, respectively. Furthermore, the disease burden was highest for prostate cancer in men and for breast cancer in women. The dioxin management policies has reduced the burden of cancer attributable to dietary exposure to dioxins and dioxin-like compounds in China. However, excess exposure in coastal areas and children remains a priority for attention.
Collapse
Affiliation(s)
- Ziwei Shi
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yiling Li
- Department of Public Health, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, PR China
| | - Xiaohan Song
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Yibaina Wang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, PR China
| | - Jianwen Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, PR China.
| | - Sheng Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
4
|
Corsaro L, Sacco D, Corbetta C, Gentilini D, Faversani A, Ferrara F, Costantino L. A new approach to study stochastic epigenetic mutations in sperm methylome of Vietnam war veterans directly exposed to Agent Orange. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae020. [PMID: 39664489 PMCID: PMC11631699 DOI: 10.1093/eep/dvae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Among the various environmental pollutants, dioxin, a highly toxic and widely used compound, is associated with numerous adverse health effects, including a potentially toxic multigenerational effect. Understanding the mechanisms by which dioxin exposure can affect sperm epigenetics is critical to comprehending the potential consequences for offspring health and development. This study investigates the possible association between weighted epimutations, hypothesized as markers of epigenetic drift, and dioxin exposure in sperm tissues. We used a public online methylation dataset consisting of 37 participants: 26 Vietnam veterans exposed to Agent Orange, an herbicide contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and 11 individuals not directly exposed to TCDD but whose serum dioxin levels are equivalent to the background. In our study, conducted at the gene level, 437 epimutated genes were identified as significantly associated with each single-digit increase in serum dioxin levels. We found no significant association between the rise in total epimutation load and serum dioxin levels. The pathway analysis performed on the genes reveals biological processes mainly related to changes in embryonic morphology, development, and reproduction. Results from our current study suggest the importance of further investigations on the consequences of dioxin exposure in humans with specific reference to germinal tissue and related heredity.
Collapse
Affiliation(s)
- Luigi Corsaro
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Davide Sacco
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Carlo Corbetta
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Davide Gentilini
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Alice Faversani
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Lucy Costantino
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| |
Collapse
|
5
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
6
|
Tahir A, Ijaz MU, Naz H, Afsar T, Almajwal A, Amor H, Razak S. Protective effect of didymin against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced reproductive toxicity in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2203-2214. [PMID: 37801147 DOI: 10.1007/s00210-023-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent environmental toxicants, which causes oxidative stress and adversely affects the male reproductive system. The current study aimed to evaluate the ameliorative role of didymin (DDM) against TCDD-induced testicular toxicity. METHODS Forty-eight male Sprague-Dawley rats were divided into four equal groups (n=12). (i) Control group, (ii) TCDD-induced group was provided with 10 μg/kg/day of TCDD, (iii) TCDD + DDM group received 10 μg/kg/day of TCDD and 2 mg/kg/day of DDM, and (iv) DDM-treated group was administered with 2 mg/kg/day of DDM. After 56 days of treatment, biochemical, steroidogenic, hormonal, spermatogenic, apoptotic, and histopathological parameters were estimated. RESULTS TCDD affected the biochemical profile by reducing the activities of antioxidant enzymes, while increasing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Furthermore, it decreased the expressions of steroidogenic enzymes, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1), and 17α-hydroxylase/17, 20-lyase (CYP17A1), as well as reduced the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone. Besides, epididymal sperm count, viability, and motility were decreased, while sperm morphological anomalies were increased. Moreover, TCDD altered the apoptotic profile by up-regulating the expressions of Bax and caspase-3, while downregulated the Bcl-2 expression. Additionally, histopathological damages were prompted due to TCDD administration. However, DDM restored all the TCDD-induced damages owing to its antioxidant, anti-apoptotic, and androgenic potential. CONCLUSION Our data suggested that DDM might play its role as a therapeutic agent against TCDD-prompted testicular toxicity.
Collapse
Affiliation(s)
- Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Huma Naz
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, Homburg, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Liu X, Song S, Wang G, Zhang Y, Su H, Wu Y, Zhang Y, Liu H, Wang X, Yu Z. Upregulated LncRNA-Meg3 modulates the proliferation and survival of MEPM cells via interacting with Smad signaling in TCDD-induced cleft palate. Food Chem Toxicol 2024; 185:114410. [PMID: 38128685 DOI: 10.1016/j.fct.2023.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in high rates of cleft palate (CP) formation, yet the underlying mechanisms remain to be characterized. In vivo, the lncRNA Meg3 was upregulated following TCDD treatment in CP-associated murine embryonic palatal tissue, with concomitant changes in proliferative and apoptotic activity in these murine embryonic palatal mesenchymal (MEPM) cells. Meg3 can modulate the TGF-β/Smad to control the proliferation, survival, and differentiation of cells. Accordingly, TCCD and TGF-β1 were herein used to treat MEPM cells in vitro, revealing that while TCDD exposure altered the proliferative activity and apoptotic death of these cells, exogenous TGF-β1 exposure antagonized these effects via TGF-β/Smad signaling. TCDD promoted Meg3 upregulation, whereas TGF-β1 suppressed TCDD-driven upregulation of this lncRNA. Meg3 was additionally determined to directly interact with Smad2, with significant Meg3 enrichment in Smad2-immunoprecipitates following TCDD treatment. When Meg3 was silenced, the impact of TCDD on Smad signaling, proliferative activity, and apoptosis were ablated, while the effects of exogenous TGF-β1 were unchanged. This supports a model wherein Meg3 is upregulated in TCDD-exposed palatal tissue whereupon it can interact with Smad2 to suppress Smad-dependent signaling, thus controlling MEPM cell proliferation and apoptosis, contributing to TCDD-induced CP, which provides a theoretical support for the precautions of cleft palate induced by TCDD.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaixing Song
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan, 450001, China
| | - Guoxu Wang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan, 450001, China
| | - Yaxin Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan, 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan, 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan, 450001, China
| | - Xiangdong Wang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
8
|
Zheng L, Zhang X, Gao Z, Zhong C, Qiu D, Yan Q. The association between polychlorinated dibenzo-p-dioxin exposure and cancer mortality in the general population: a cohort study. Front Public Health 2024; 12:1354149. [PMID: 38410662 PMCID: PMC10894979 DOI: 10.3389/fpubh.2024.1354149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Earlier research has indicated that being exposed to polychlorinated dibenzo-p-dioxins (PCDDs) in the workplace can heighten the likelihood of cancer-related deaths. Nevertheless, there is limited information available regarding the connection between PCDD exposure and the risk of cancer mortality in the general population (i.e., individuals not exposed to these substances through their occupation). Methods The National Health and Nutrition Examination Survey (NHANES) detected PCDDs in the general population, and the death data were recently updated as of December 31, 2019. We conducted Cox regression analysis and controlled for covariates including age, gender, ethnicity, educational attainment, physical activity, alcohol intake, NHANES survey period, BMI category, cotinine concentration, and household earnings. Results After accounting for confounding factors, the findings indicated that for each incremental rise of 1 log unit in 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin, there was a 76% rise in the likelihood of death from any cause, with a p value of 0.003. An increase of 1 log unit in the concentration of 1,2,3,4,6,7,8-heptachlorodibenzofuran could potentially lead to a 90% higher risk of cancer mortality, as indicated by a p value of 0.034 and a 95% confidence interval of 0.05-2.43. As the concentrations of 1,2,3,4,6,7,8-heptachlorodibenzofuran increased, the dose-response curve indicated a proportional rise in the risk of cancer mortality, accompanied by a linear p value of 0.044. The sensitivity analysis demonstrated that our findings were resilient. Discussion In the general population, an elevated risk of cancer mortality was observed in PCDDs due to the presence of 1,2,3,4,6,7,8-heptachlorodibenzofuran. Mechanistic research is required to further confirm it.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Yan
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Gaspari L, Haouzi D, Gennetier A, Granes G, Soler A, Sultan C, Paris F, Hamamah S. Transgenerational Transmission of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Effects in Human Granulosa Cells: The Role of MicroRNAs. Int J Mol Sci 2024; 25:1144. [PMID: 38256218 PMCID: PMC10816780 DOI: 10.3390/ijms25021144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) might contribute to the increase in female-specific cancers in Western countries. 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) is considered the "prototypical toxicant" to study EDCs' effects on reproductive health. Epigenetic regulation by small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), is crucial for controlling cancer development. The aim of this study was to analyze transcriptional activity and sncRNA expression changes in the KGN cell line after acute (3 h) and chronic (72 h) exposure to 10 nM TCDD in order to determine whether sncRNAs' deregulation may contribute to transmitting TCDD effects to the subsequent cell generations (day 9 and day 14 after chronic exposure). Using Affymetrix GeneChip miRNA 4.0 arrays, 109 sncRNAs were found to be differentially expressed (fold change < -2 or >2; p-value < 0.05) between cells exposed or not (control) to TCDD for 3 h and 72 h and on day 9 and day 14 after chronic exposure. Ingenuity Pathway Analysis predicted that following the acute and chronic exposure of KGN cells, sncRNAs linked to cellular development, growth and proliferation were downregulated, and those linked to cancer promotion were upregulated on day 9 and day 14. These results indicated that TCDD-induced sncRNA dysregulation may have transgenerational cancer-promoting effects.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Delphine Haouzi
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Aurélie Gennetier
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Gaby Granes
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Alexandra Soler
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Global ART Innovation Network (GAIN), 34295 Montpellier, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Samir Hamamah
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| |
Collapse
|
10
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
11
|
Zhang Y, Li J, Shi W, Lu L, Zhou Q, Zhang H, Liu R, Pu Y, Yin L. Di(2-ethylhexyl) phthalate induces reproductive toxicity and transgenerational reproductive aging in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122259. [PMID: 37541378 DOI: 10.1016/j.envpol.2023.122259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
With the large-scale production and use of plastic products, the global plastic pollution problem is becoming more and more serious. The plasticizer di (2-ethylhexyl) phthalate (DEHP), which is widely used in the production of plastics, has caused great concern for the health of the population. Exposure of organisms to DEHP can cause a variety of health damage, of which reproductive system damage is an important part. At present, there are still few studies on DEHP in reproductive aging, and it is of great significance to explore the role of DEHP in promoting reproductive aging and its underlying mechanism. In this study, the model organism Caenorhabditis elegans (C. elegans) was used to preliminarily explore the mechanism of DEHP-induced female reproductive senescence. The results showed that DEHP reduced the number of offspring and gonad area of C. elegans, resulting in shortened reproductive and life span, abnormal phenotypes in somatic gonad structure including the Emo phenotype, the BOW phenotype, a twisted gonad arm, and atrophied oocytes. Biochemical studies showed that DEHP promoted oxidative stress and autophagy in C. elegans. Further, we found the decreased number of offspring, malformed somatic gonad structure, oxidative damage and autophagy induced by DEHP in parental worms can be inheritance to the not directly exposed offspring.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Jingjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
12
|
Hall A, Mattison D, Singh N, Chatzistamou I, Zhang J, Nagarkatti M, Nagarkatti P. Effect of TCDD exposure in adult female and male mice on the expression of miRNA in the ovaries and testes and associated reproductive functions. FRONTIERS IN TOXICOLOGY 2023; 5:1268293. [PMID: 37854252 PMCID: PMC10579805 DOI: 10.3389/ftox.2023.1268293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant found widely across the world. While animal and human studies have shown that exposure to TCDD may cause significant alterations in the reproductive tract, the effect of TCDD on the expression of miRNA in the reproductive organs has not been previously tested. In the current study, we exposed adult female or male mice to TCDD or vehicle and bred them to study the impact on reproduction. The data showed that while TCDD treatment of females caused no significant change in litter size, it did alter the survival of the pups. Also, TCDD exposure of either the male or female mice led to an increase in the gestational period. While TCDD did not alter the gross morphology of the ovaries and testes, it induced significant alterations in the miRNA expression. The ovaries showed the differential expression of 426 miRNAs, of which 315 miRNAs were upregulated and 111 miRNA that were downregulated after TCDD exposure when compared to the vehicle controls. In the testes, TCDD caused the differential expression of 433 miRNAs, with 247 miRNAs upregulated and 186 miRNAs downregulated. Pathway analysis showed that several of these dysregulated miRNAs targeted reproductive functions. The current study suggests that the reproductive toxicity of TCDD may result from alterations in the miRNA expression in the reproductive organs. Because miRNAs also represent one of the epigenetic pathways of gene expression, our studies suggest that the transgenerational toxicity of TCDD may also result from dysregulation in the miRNAs.
Collapse
Affiliation(s)
- Alina Hall
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald Mattison
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jiajia Zhang
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
13
|
Thermal Susceptibility of Nickel in the Manufacture of Softeners. Processes (Basel) 2023. [DOI: 10.3390/pr11030821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The chemical industry includes a wide range of factories focused on obtaining final products as: (i) plastics; (ii) chemical fibers; (iii) rubber; (iv) perfumery and cosmetic products; and (v) cleaning products. Although the level of safety in the activities and installations of this sector is very high, the use of dangerous substances implies an increased risk of suffering an accident involving the emission of hazardous substances, as well as endangering the safety of workers. In the case of the manufacture of softeners, the presence of isopropanol (C3H8O), and dimethyl sulfate (CH3)2SO4), have been reported to be the accident cause in most of the cases. The European accident database (eMars) reported an accident in which the presence of impurities of nickel (Ni) in the hydrogenated tallow used as raw material for softener production may have increased thermal reactivity and the chances of spontaneous combustion. This paper analyzes the results obtained with the Maciejasz Index (MI) to understand the thermal susceptibility of these substances in liquid state. The results show that combinations of nickel (hydrogenated tallow catalyst) with other liquid substances (isopropanol, dimethyl sulfate, and sulfuric acid) are not sufficiently reactive with oxygen to cause a spontaneous combustion.
Collapse
|
14
|
Singh NP, Yang X, Bam M, Nagarkatti M, Nagarkatti P. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces multigenerational alterations in the expression of microRNA in the thymus through epigenetic modifications. PNAS NEXUS 2023; 2:pgac290. [PMID: 36712935 PMCID: PMC9833045 DOI: 10.1093/pnasnexus/pgac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/07/2022] [Indexed: 05/11/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, is an environmental contaminant that is known for mediating toxicity across generations. However, whether TCDD can induce multigenerational changes in the expression of microRNAs (miRs) has not been previously studied. In the current study, we investigated the effect of administration of TCDD in pregnant mice (F0) on gestational day 14, on the expression of miRs in the thymus of F0 and subsequent generations (F1 and F2). Of the 3200 miRs screened, 160 miRs were dysregulated similarly in F0, F1, and F2 generations, while 46 miRs were differentially altered in F0 to F2 generations. Pathway analysis revealed that the changes in miR signature profile mediated by TCDD affected the genes that regulate cell signaling, apoptosis, thymic atrophy, cancer, immunosuppression, and other physiological pathways. A significant number of miRs that showed altered expression exhibited dioxin response elements (DRE) on their promoters. Focusing on one such miR, namely miR-203 that expressed DREs and was induced across F0 to F2 by TCDD, promoter analysis showed that one of the DREs expressed by miR-203 was functional to TCDD-mediated upregulation. Also, the histone methylation status of H3K4me3 in the miR-203 promoter was significantly increased near the transcriptional start site in TCDD-treated thymocytes across F0 to F2 generations. Genome-wide chromatin immunoprecipitation sequencing study suggested that TCDD may cause alterations in histone methylation in certain genes across the three generations. Together, the current study demonstrates that gestational exposure to TCDD can alter the expression of miRs in F0 through direct activation of DREs as well as across F0, F1, and F2 generations through epigenetic pathways.
Collapse
Affiliation(s)
- Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
16
|
Schuppe HC, Köhn FM. [Impact of lifestyle and environmental factors on male reproductive health]. UROLOGIE (HEIDELBERG, GERMANY) 2022; 61:1217-1228. [PMID: 36229540 DOI: 10.1007/s00120-022-01951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The identification of potential environmental hazards is of clinical relevance for the diagnosis of male infertility. Knowledge about these factors will improve prevention of fertility disorders. Apart from drugs or factors related to lifestyle such as alcohol and tobacco smoke, various environmental and occupational agents, both chemical and physical, may impair male reproduction. Reproductive toxicity may evolve at the hypothalamic-pituitary, testicular, or posttesticular level; endpoints comprise deterioration of spermatogenesis and sperm function as well as endocrine disorders and sexual dysfunction. However, due to the complex regulation of the male reproductive system, information regarding single exogenous factors and their mechanisms of action in humans is limited. This is also due to the fact that extrapolation of results obtained from experimental animal or in vitro studies remains difficult. Nevertheless, the assessment of relevant exposures to reproductive toxicants should be carefully evaluated during diagnostic procedures of andrological patients.
Collapse
Affiliation(s)
- Hans-Christian Schuppe
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie, Sektion Konservative Andrologie, Universitätsklinikum Gießen und Marburg GmbH - Standort Gießen, Justus-Liebig-Universität Gießen, Gaffkystr. 14, 35385, Gießen, Deutschland.
| | | |
Collapse
|
17
|
Faiad W, Soukkarieh C, Murphy DJ, Hanano A. Effects of dioxins on animal spermatogenesis: A state-of-the-art review. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1009090. [PMID: 36339774 PMCID: PMC9634422 DOI: 10.3389/frph.2022.1009090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The male reproductive system is especially affected by dioxins, a group of persistent environmental pollutants, resulting in irreversible abnormalities including effects on sexual function and fertility in adult males and possibly on the development of male offspring. The reproductive toxicity caused by dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals, spermatogenesis is a highly sensitive and dynamic process that includes proliferation and maturation of germ cells. Spermatogenesis is subject to multiple endogenous and exogenous regulatory factors, including a wide range of environmental toxicants such as dioxins. This review discusses the toxicological effects of dioxins on spermatogenesis and their relevance to male infertility. After a detailed categorization of the environmental contaminants affecting the spermatogenesis, the exposure pathways and bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins on spermatogenesis are then outlined in detail. The endocrine-disrupting effects of dioxins in animals and humans are discussed with a particular focus on their effects on the expression of spermatogenesis-related genes. Finally, the impacts of dioxins on the ratio of X and Y chromosomes, the status of serum sex hormones, the quality and fertility of sperm, and the transgenerational effects of dioxins on male reproduction are reviewed.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J. Murphy
- School of Applied Sciences, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria,Correspondence: Abdulsamie Hanano
| |
Collapse
|
18
|
Wei S, Wei Y, Gong Y, Chen Y, Cui J, Li L, Yan H, Yu Y, Lin X, Li G, Yi L. Metabolomics as a valid analytical technique in environmental exposure research: application and progress. Metabolomics 2022; 18:35. [PMID: 35639180 DOI: 10.1007/s11306-022-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.
Collapse
Affiliation(s)
- Shuang Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyun Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yaqi Gong
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yonglin Chen
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jian Cui
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Linwei Li
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Yan
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yueqiu Yu
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiang Lin
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
Montjean D, Neyroud AS, Yefimova MG, Benkhalifa M, Cabry R, Ravel C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int J Mol Sci 2022; 23:3350. [PMID: 35328771 PMCID: PMC8950994 DOI: 10.3390/ijms23063350] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
| | - Anne-Sophie Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
| | - Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia;
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Célia Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
20
|
TCDD-induced IL-24 secretion in human chorionic stromal cells inhibits placental trophoblast cell migration and invasion. Reprod Toxicol 2022; 108:10-17. [PMID: 34995713 DOI: 10.1016/j.reprotox.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/30/2022]
Abstract
Environmental pollutant dioxins are potentially harmful to pregnant women and can lead to severe adverse outcomes in pregnancy, such as spontaneous abortion and stillbirth. However, little is currently known about the underlying toxicological mechanism. Our previous study reported that the IL-24 gene is a dioxin response gene during 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) treatment. Here, we further tested the effect of TCDD on IL-24 expression in human chorionic stromal cells. We also investigated the effect of IL-24 on the behaviors of human placental trophoblast cells and predicted the potential mechanism underlying these behaviors using functional network analysis. We found that TCDD stimulates IL-24 expression in human chorionic stromal cells in an AhR (aromatic hydrocarbon receptor)-related manner. We also found that IL-24 inhibits the migration and invasion of human placental trophoblast cells, the possible mechanism of which involves thirteen key proteins and mitochondrial function. Our findings suggest that IL-24 is a potential factor induced by TCDD to regulate trophoblast cell invasion, which potentially involves in TCDD-induced abortion.
Collapse
|