1
|
Liao D, Yang S, Zhao L, Ren W, Liu S, Yu H, Chen Y, Yu T, Zeng T, Zhou L, Zhang Y. ICAT-Mediated Crosstalk Between Cervical Cancer Cells and Macrophages Promotes M2-Like Macrophage Polarization to Reinforce Tumor Malignant Behaviors. Mol Carcinog 2024; 63:2425-2440. [PMID: 39279723 DOI: 10.1002/mc.23820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024]
Abstract
Inhibitor of β-catenin and T-cell factor (ICAT) is a classical inhibitor of the Wnt signaling pathway. Nonetheless, our previous work found that ICAT is overexpressed in cervical cancer (CC), resulting in the augmentation of migration and invasion capabilities of CC cells. It remains unclear what molecular mechanism underlies this phenomenon. The interaction between cancer cells and the tumor microenvironment (TME) promotes the outgrowth and metastasis of tumors. Tumor-associated macrophages (TAMs) are a major constituent of the TME and have a significant impact on the advancement of CC. Consequently, our inquiry pertains to the potential of ICAT to facilitate tumor development through its modulation of the cervical TME. In this study, we first verified that ICAT regulated the secretion of cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) in CC cells, leading to M2-like macrophage polarization and enhancement of the migration and invasion of CC cells. Furthermore, the system of co-culturing human umbilical vein endothelial cells (HUVECs) with macrophages revealed that depending on the CC cells' overexpression or inhibition of ICAT, the vascular tube formation by HUVECs can be either increased or decreased. Overall, our study indicates that ICAT stimulates M2-like polarization of TAMs via upregulating IL-10 and TGF-β, which results in increased neovascularization, tumor metastasis, and immunosuppression in CC. In upcoming times, inhibiting crosstalk between CC cells and TAMs may be a possible strategy for CC therapy.
Collapse
Affiliation(s)
- Deyu Liao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shiyu Yang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ling Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Ren
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyan Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Huomei Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanxiang Chen
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Tao Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Tao Zeng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Udvorková N, Fekiačová A, Majtánová K, Mego M, Kučerová L. Antibody-drug conjugates as a novel therapeutic modality to treat recurrent refractory germ cell tumors. Am J Physiol Cell Physiol 2024; 327:C362-C371. [PMID: 38912730 DOI: 10.1152/ajpcell.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
This review provides a rationale for using the Food and Drug Administration (FDA)-approved antibody-drug conjugates (ADCs) for implementing as therapy in recurrent refractory germ cell tumors similar to their position in the treatment of other types of chemoresistant solid tumors. Germ cell tumors (GCTs) originate from germ cells; they most frequently develop in ovaries or in the testes, while being the most common type of malignancy in young men. GCTs are very sensitive to cisplatin-based chemotherapy, but therapeutic resistance occurs in a considerable number of cases, which is associated with disease recurrence and poor patient prognosis. ADCs are a novel type of targeted antitumor agents that combine tumor antigen-specific monoclonal antibodies with chemically linked chemotherapeutic drugs (payload) exerting a cytotoxic effect. Several FDA-approved ADCs use as targeting moieties the antigens that are also detected in the GCTs, offering a benefit of this type of targeted therapy even for patients with relapsed/refractory testicular GCTs (rrTGCT) unresponsive to standard chemotherapy.
Collapse
Affiliation(s)
- Natália Udvorková
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Fekiačová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Majtánová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Lucia Kučerová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
Sandomenico A, Selis F, Sivaccumar JP, Olimpieri P, Iaccarino E, Cicatiello V, Cantile M, Sanna R, Leonardi A, De Falco S, Ruvo M. Recombinant humanized Fab fragments targeting the CFC domain of human Cripto-1. Biochem Biophys Res Commun 2024; 694:149417. [PMID: 38150919 DOI: 10.1016/j.bbrc.2023.149417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
In the era of immunotherapy, the targeting of disease-specific biomarkers goes hand in hand with the development of highly selective antibody-based reagents having optimal pharmacological/toxicological profiles. One interesting and debated biomaker for several types of cancers is the onco-fetal protein Cripto-1 that is selectively expressed in many solid tumours and has been actively investigated as potential theranostic target. Starting from previously described anti-CFC/Cripto-1 murine monoclonal antibodies, we have moved forward to prepare the humanized recombinant Fabs which have been engineered so as to bear an MTGase site useful for a one-step site-specific labelling. The purified and bioconjugated molecules have been extensively characterized and tested on Cripto-1-positive cancer cells through in vitro binding assays. These recombinant Fab fragments recognize the target antigen in its native form on intact cells suggesting that they can be further developed as reagents for detecting Cripto-1 in theranostic settings.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131, Napoli, Italy.
| | | | - Jwala P Sivaccumar
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131, Napoli, Italy
| | | | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131, Napoli, Italy
| | - Valeria Cicatiello
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, Via P. Castellino, 111, 80131, Napoli, Italy
| | | | | | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnology, Italy
| | - Sandro De Falco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, Via P. Castellino, 111, 80131, Napoli, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131, Napoli, Italy.
| |
Collapse
|
4
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
5
|
Mazurakova A, Koklesova L, Vybohova D, Samec M, Kudela E, Biringer K, Šudomová M, Hassan STS, Kello M, Büsselberg D, Golubnitschaja O, Kubatka P. Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells. Front Pharmacol 2023; 14:1160068. [PMID: 37089930 PMCID: PMC10115970 DOI: 10.3389/fphar.2023.1160068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Significant limitations of the reactive medical approach in breast cancer management are clearly reflected by alarming statistics recorded worldwide. According to the WHO updates, breast malignancies become the leading cancer type. Further, the portion of premenopausal breast cancer cases is permanently increasing and demonstrates particularly aggressive patterns and poor outcomes exemplified by young patients with triple-negative breast cancer that lacks targeted therapy. Accumulating studies suggest the crucial role of stem cells in tumour biology, high metastatic activity, and therapy resistance of aggressive breast cancer. Therefore, targeting breast cancer stem cells is a promising treatment approach in secondary and tertiary breast cancer care. To this end, naturally occurring substances demonstrate high potential to target cancer stem cells which, however, require in-depth analysis to identify effective anti-cancer agents for cost-effective breast cancer management. The current article highlights the properties of flavonoids particularly relevant for targeting breast cancer stem cells to mitigate therapy resistance. The proposed approach is conformed with the principles of 3P medicine by applying predictive diagnostics, patient stratification and treatments tailored to the individualised patient profile. Expected impacts are very high, namely, to overcome limitations of reactive medical services improving individual outcomes and the healthcare economy in breast cancer management. Relevant clinical applications are exemplified in the paper.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- *Correspondence: Peter Kubatka, ; Alena Mazurakova,
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Desanka Vybohova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- *Correspondence: Peter Kubatka, ; Alena Mazurakova,
| |
Collapse
|
6
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
7
|
Francescangeli F, De Angelis ML, Rossi R, Sette G, Eramo A, Boe A, Guardiola O, Tang T, Yu SC, Minchiotti G, Zeuner A. CRIPTO Is a Marker of Chemotherapy-Induced Stem Cell Expansion in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:830873. [PMID: 35719935 PMCID: PMC9200964 DOI: 10.3389/fonc.2022.830873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 01/15/2023] Open
Abstract
Chemotherapy is the mainstay for the treatment of non-small cell lung cancer (NSCLC). However, NSCLC cells are either intrinsically chemoresistant or rapidly develop therapy resistance. Cancer stem cells (CSCs) are widely recognized as the cell population responsible for resistance to systemic therapies, but the molecular responses of CSCs to chemotherapeutic agents are largely unknown. We identified the embryonic protein CRIPTO in stem cell-enriched spheroid cultures of adenocarcinoma (AC) and squamous cell carcinoma (SCC) derived from NSCLC surgical specimens. The CRIPTO-positive population had increased clonogenic capacity and expression of stem cell-related factors. Stemness-related properties were also obtained with forced CRIPTO expression, whereas CRIPTO downregulation resulted in cell cycle blockade and CSCs death. Cell populations positive and negative for CRIPTO expression were interconvertible, and interfering with their reciprocal equilibrium resulted in altered homeostasis of cell expansion both in spheroid cultures and in tumor xenografts. Chemotherapy treatment of NSCLC cells resulted in reduction of cell number followed by increased CRIPTO expression and selective survival of CRIPTO-positive cells. In NSCLC tumor xenografts, chemotherapeutic agents induced partial cell death and tumor stabilization followed by CRIPTO overexpression and tumor progression. Altogether, these findings indicate CRIPTO as a marker of lung CSCs possibly implicated in cancer cell plasticity and post-chemotherapy tumor progression.
Collapse
Affiliation(s)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Tao Tang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, ChongQing, China.,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, ChongQing, China.,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing, China
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|