1
|
Wang L, Liu R, Liao J, Xiong X, Xia L, Wang W, Liu J, Zhao F, Zhuo L, Li H. Meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia. Front Psychiatry 2024; 15:1465758. [PMID: 39247615 PMCID: PMC11377232 DOI: 10.3389/fpsyt.2024.1465758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Previous studies based on resting-state functional magnetic resonance imaging(rs-fMRI) and voxel-based morphometry (VBM) have demonstrated significant abnormalities in brain structure and resting-state functional brain activity in patients with early-onset schizophrenia (EOS), compared with healthy controls (HCs), and these alterations were closely related to the pathogenesis of EOS. However, previous studies suffer from the limitations of small sample sizes and high heterogeneity of results. Therefore, the present study aimed to effectively integrate previous studies to identify common and specific brain functional and structural abnormalities in patients with EOS. Methods The PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), and WanFang databases were systematically searched to identify publications on abnormalities in resting-state regional functional brain activity and gray matter volume (GMV) in patients with EOS. Then, we utilized the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software to conduct a whole-brain voxel meta-analysis of VBM and rs-fMRI studies, respectively, and followed by multimodal overlapping on this basis to comprehensively identify brain structural and functional abnormalities in patients with EOS. Results A total of 27 original studies (28 datasets) were included in the present meta-analysis, including 12 studies (13 datasets) related to resting-state functional brain activity (496 EOS patients, 395 HCs) and 15 studies (15 datasets) related to GMV (458 EOS patients, 531 HCs). Overall, in the functional meta-analysis, patients with EOS showed significantly increased resting-state functional brain activity in the left middle frontal gyrus (extending to the triangular part of the left inferior frontal gyrus) and the right caudate nucleus. On the other hand, in the structural meta-analysis, patients with EOS showed significantly decreased GMV in the right superior temporal gyrus (extending to the right rolandic operculum), the right middle temporal gyrus, and the temporal pole (superior temporal gyrus). Conclusion This meta-analysis revealed that some regions in the EOS exhibited significant structural or functional abnormalities, such as the temporal gyri, prefrontal cortex, and striatum. These findings may help deepen our understanding of the underlying pathophysiological mechanisms of EOS and provide potential biomarkers for the diagnosis or treatment of EOS.
Collapse
Affiliation(s)
- Lu Wang
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Juan Liao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xin Xiong
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Linfeng Xia
- Department of Neurosurgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Weiwei Wang
- Department of Psychiatry, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junqi Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Fulin Zhao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
| | - Lihua Zhuo
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
3
|
Hojlo MA, Ghebrelul M, Genetti CA, Smith R, Rockowitz S, Deaso E, Beggs AH, Agrawal PB, Glahn DC, Gonzalez-Heydrich J, Brownstein CA. Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants. Genes (Basel) 2023; 14:779. [PMID: 37107537 PMCID: PMC10138040 DOI: 10.3390/genes14040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Children and adolescents with early-onset psychosis (EOP) have more rare genetic variants than individuals with adult-onset forms of the illness, implying that fewer EOP participants are needed for genetic discovery. The Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) study predicted that 10 genes with ultra-rare variation were linked to adult-onset schizophrenia. We hypothesized that rare variants predicted "High" and "Moderate" by the Variant Effect Predictor Algorithm (abbreviated as VEPHMI) in these 10 genes would be enriched in our EOP cohort. METHODS We compared rare VEPHMI variants in individuals with EOP (N = 34) with race- and sex-matched controls (N = 34) using the sequence kernel association test (SKAT). RESULTS GRIN2A variants were significantly increased in the EOP cohort (p = 0.004), with seven individuals (20% of the EOP cohort) carrying a rare VEPHMI variant. The EOP cohort was then compared to three additional control cohorts. GRIN2A variants were significantly increased in the EOP cohort for two of the additional control sets (p = 0.02 and p = 0.02), and trending towards significance for the third (p = 0.06). CONCLUSION Despite a small sample size, GRIN2A VEPHMI variant burden was increased in a cohort of individuals with EOP in comparison to controls. GRIN2A variants have been associated with a range of neuropsychiatric disorders including adult-onset psychotic spectrum disorder and childhood-onset schizophrenia. This study supports the role of GRIN2A in EOP and emphasizes its role in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Margaret A. Hojlo
- Early Psychosis Investigation Center (EPICenter), Boston Children’s Hospital, Boston, MA 02115, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Merhawi Ghebrelul
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Casie A. Genetti
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Richard Smith
- Early Psychosis Investigation Center (EPICenter), Boston Children’s Hospital, Boston, MA 02115, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shira Rockowitz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Emma Deaso
- Early Psychosis Investigation Center (EPICenter), Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alan H. Beggs
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B. Agrawal
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Holtz Children’s Hospital, Jackson Health System, Miami, FL 33136, USA
| | - David C. Glahn
- Early Psychosis Investigation Center (EPICenter), Boston Children’s Hospital, Boston, MA 02115, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Gonzalez-Heydrich
- Early Psychosis Investigation Center (EPICenter), Boston Children’s Hospital, Boston, MA 02115, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine A. Brownstein
- Early Psychosis Investigation Center (EPICenter), Boston Children’s Hospital, Boston, MA 02115, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2022; 23:11245. [PMID: 36232548 PMCID: PMC9570195 DOI: 10.3390/ijms231911245] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as "the microbiome-gut-brain axis", is especially underlined. In this review, we discuss the link between the intestinal microbiome and the brain and host response involving different pathways between the intestinal microbiota and the nervous system (e.g., neurotransmitters, endocrine system, immunological mechanisms, or bacterial metabolites). We review the microbiota alterations and their results in the development of psychiatric disorders, including major depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| |
Collapse
|
5
|
Schneider M, Müller CP, Knies AK. Low income and schizophrenia risk: a narrative review. Behav Brain Res 2022; 435:114047. [PMID: 35933046 DOI: 10.1016/j.bbr.2022.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
Despite decades of research, the precise etiology of schizophrenia is not fully understood. Ample evidence indicates that the disorder derives from a complex interplay of genetic and environmental factors during vulnerable stages of brain maturation. Among the plethora of risk factors investigated, stress, pre- and perinatal insults, and cannabis use have been repeatedly highlighted as crucial environmental risk factors for schizophrenia. Compelling findings from population-based longitudinal studies suggest low income as an additional risk factor for future schizophrenia diagnosis, but underlying mechanisms remain unclear. In this narrative review, we 1) summarize the literature in support of a relationship between low (parental) income and schizophrenia risk, and 2) explore the mediating role of chronic stress, pre- and perinatal factors, and cannabis use as established risk factors for schizophrenia. Our review describes how low income facilitates the occurrence and severity of these established risk factors and thus contributes to schizophrenia liability. The broadest influence of low income was identified for stress, as low income was found to be associated with exposure to a multitude of severe psychological and physiological stressors. This narrative review adds to the growing literature reporting a close relationship between income and mental health.
Collapse
Affiliation(s)
- Miriam Schneider
- Department of Scientific Coordination and Management, Danube Private University, 3500 Krems-Stein, Austria.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Andrea K Knies
- Department of Scientific Coordination and Management, Danube Private University, 3500 Krems-Stein, Austria
| |
Collapse
|