1
|
Awere-Duodu A, Darkwah S, Osman AH, Donkor ES. A systematic review and meta-analysis show a decreasing prevalence of post-stroke infections. BMC Neurol 2024; 24:479. [PMID: 39696029 DOI: 10.1186/s12883-024-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Infection is a common complication in the acute phase after stroke; a systematic review in 2011 reported a post-stroke infection prevalence of 30%. Despite the plethora of primary data on post-stroke infections in recent times, a systematic review that synthesizes the data to provide comprehensive information to guide preventive, control, and management efforts is yet to be undertaken. This systematic review, therefore, aimed at bridging this gap by describing the epidemiology of post-stroke infections including the global prevalence and the associated mortality rates. METHODOLOGY A comprehensive search was conducted in PubMed, SCOPUS, and Web of Science resulting in 2210 studies, of which 73 studies covering 32,109,574 stoke patients were included in the systematic review. Prevalence data on defined post-stroke infections were extracted for analysis in RStudio version 4.3.3. RESULTS The pooled prevalence of post-stroke infections and mortality rates were 9.14% and 15.91% respectively. The prevalence of post-stroke infections was highest for pneumonia (12.4%), followed by urinary tract infection (8.31%). Geographically, the prevalence of post-stroke infections for the various continents were Europe (10.41%), Africa (10.22%), South America (8.83%), North America (8.15%), Asia (8.09%), and Australia (7.88%). Common etiological agents of post-stroke infections included multidrug-resistant organisms particularly, Carbapenem-resistant Klebsiella pneumoniae (15.4-31.8%), Methicillin-resistant Staphylococcus aureus (9.8-15.4%), and Carbapenem-resistant Acinetobacter baumannii (38.5%). CONCLUSION This systematic review indicates about a 3-fold decline in the global prevalence of post-stroke infections in the last decade. Pneumonia is the most common post-stroke infection. Europe and Africa have the highest prevalence of post-stroke infections.
Collapse
Affiliation(s)
- Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Samuel Darkwah
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana.
| |
Collapse
|
2
|
Zou K, Deng Q, Zhang H, Huang C. Glymphatic system: a gateway for neuroinflammation. Neural Regen Res 2024; 19:2661-2672. [PMID: 38595285 PMCID: PMC11168510 DOI: 10.4103/1673-5374.391312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
The glymphatic system is a relatively recently identified fluid exchange and transport system in the brain. Accumulating evidence indicates that glymphatic function is impaired not only in central nervous system disorders but also in systemic diseases. Systemic diseases can trigger the inflammatory responses in the central nervous system, occasionally leading to sustained inflammation and functional disturbance of the central nervous system. This review summarizes the current knowledge on the association between glymphatic dysfunction and central nervous system inflammation. In addition, we discuss the hypothesis that disease conditions initially associated with peripheral inflammation overwhelm the performance of the glymphatic system, thereby triggering central nervous system dysfunction, chronic neuroinflammation, and neurodegeneration. Future research investigating the role of the glymphatic system in neuroinflammation may offer innovative therapeutic approaches for central nervous system disorders.
Collapse
Affiliation(s)
- Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qingwei Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hong Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Song HY, Jin S, Lee S, Jalin AMA, Roh KH, Kim WK. The Therapeutic Effects of SP-8356, a Verbenone Derivative, with Multimodal Cytoprotective Mechanisms in an Ischemic Stroke Rat Model. Int J Mol Sci 2024; 25:12769. [PMID: 39684478 DOI: 10.3390/ijms252312769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
An ischemic cerebral stroke results from the interruption of blood flow to the brain, triggering rapid and complex cascades of excitotoxicity, oxidative stress, and inflammation. Current reperfusion therapies, including intravenous thrombolysis and mechanical thrombectomy, cause further brain injury due to reperfusion-induced cytotoxicity. To date, novel cytoprotective therapies that could address these challenges have yet to be developed, likely due to the limitations of targeting a single pathologic mechanism. To address these unmet clinical needs, we investigated a synthetic verbenone derivative, SP-8356, as a potential multi-target cytoprotective agent for acute ischemic strokes. In transient middle cerebral artery occlusion (MCAO) rats, SP-8356 significantly reduced brain infarct and edema volumes while improving acute neurological deficits in a dose-dependent manner. Furthermore, SP-8356 improved long-term outcomes, particularly by reducing mortality. These potent cytoprotective effects of SP-8356 were achieved by suppressing the excessive production of free radicals and pro-inflammatory cytokines, reducing the infiltration of inflammatory cells, and mitigating increases in blood-brain barrier permeability. Additional research is needed to determine whether co-administration of SP-8356 can extend the therapeutic time window of reperfusion therapies by mitigating ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hwa Young Song
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Central Research Institute, Shin Poong Pharmaceutical Company, Ltd., Ansan 15610, Republic of Korea
| | - Sejong Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Sekwang Lee
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | | | - Kyung-Hye Roh
- Central Research Institute, Shin Poong Pharmaceutical Company, Ltd., Ansan 15610, Republic of Korea
| | - Won-Ki Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Chen X, Yang D, Zhao H, Zhang H, Hong P. Stroke-Induced Renal Dysfunction: Underlying Mechanisms and Challenges of the Brain-Kidney Axis. CNS Neurosci Ther 2024; 30:e70114. [PMID: 39533116 PMCID: PMC11557443 DOI: 10.1111/cns.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Stroke, a major neurological disorder and a leading cause of disability and death, often inflicts damage upon other organs, particularly the kidneys. While chronic kidney disease (CKD) has long been established as a significant risk factor for cerebrovascular disease, stroke can induce renal dysfunction, manifesting as acute kidney injury (AKI) or CKD. Mounting clinical and basic research evidence supports the existence of a bidirectional brain-kidney crosstalk following stroke, implicating specific mechanisms and pathways in stroke-related renal dysfunction. This review analyzes pertinent experimental studies, elucidating the underlying mechanisms of this cerebro-renal interaction following stroke. Additionally, we summarize the current landscape of clinical research investigating brain-kidney interplay and discuss potential challenges in the future. By enhancing our understanding of the scientific underpinnings of brain-kidney crosstalk, this review paves the way for improved treatment strategies and outcomes for stroke patients. Recognizing the intricate interplay between the brain and kidneys after stroke holds profound clinical implications.
Collapse
Affiliation(s)
- Xi Chen
- Department of AnesthesiologyZhujiang Hospital of Southern Medical UniversityGuangzhouChina
- College of AnesthesiologySouthern Medical UniversityGuangzhouChina
| | - Dong‐Xiao Yang
- Department of AnesthesiologyZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Hong‐Fei Zhang
- Department of AnesthesiologyZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Pu Hong
- Department of AnesthesiologyZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
6
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
7
|
Dasdelen MF, Caglayan AB, Er S, Beker MC, Ates N, Gronewold J, Doeppner TR, Hermann DM, Kilic E. Social isolation initiated post-weaning augments ischemic brain injury by promoting pro-inflammatory responses. Exp Neurol 2024; 375:114729. [PMID: 38365135 DOI: 10.1016/j.expneurol.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Social isolation is associated with poor stroke outcome, but the underlying molecular mechanisms were largely unknown. In male Balb/C mice exposed to transient middle cerebral artery occlusion (MCAo), we examined the effects of social isolation initiated post-weaning on ischemic injury, cytokine/chemokine responses and cell signaling using a broad panel of techniques that involved immunocytochemistry, cytokine/chemokine array and Western blots. Social isolation initiated post-weaning elevated infarct size, brain edema and neuronal injury in the ischemic brain tissue 3 days after MCAo, and increased microglia/ macrophage and leukocyte accumulation. In line with the increased immune cell recruitment, levels of several proinflammatory cytokines (e.g., IL-1α, IL-1β, IL-13, IL-17, TNF-α, IFN-γ), chemokines (e.g., CCL3, CCL4, CCL12, CXCL2, CXCL9, CXCL12) and adhesion molecules (i.e., ICAM-1) were increased in the ischemic brain tissue of socially isolated compared with paired housing mice, whereas levels of selected cytokines (IL-5, IL-6, IL-16) and colony-stimulating factors (G-CSF, GM-CSF) were reduced. The activity of the transcription factor nuclear factor-ĸB (NF-ĸB), which promotes cell injury via pro-inflammatory responses, was increased by social isolation, whereas that of nuclear factor erythroid related factor-2 (Nrf-2), which mediates anti-oxidative responses under oxidative stress conditions, was reduced. Our study shows that social isolation profoundly alters post-ischemic cell signaling in a way promoting pro-inflammatory responses. Our results highlight the importance of social support in preventing deleterious health effects of social isolation.
Collapse
Affiliation(s)
- Muhammed Furkan Dasdelen
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Burak Caglayan
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sezgin Er
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nilay Ates
- Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Istanbul, Turkey; Department of Molecular Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Janine Gronewold
- Department of Neurology, University Hospital of Essen, University of Duisburg-, Essen, Germany
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital of Essen, University of Duisburg-, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
8
|
Dolkar P, Deyang T, Anand N, Rathipriya AG, Hediyal TA, Chandrasekaran V, Krishnamoorthy NK, Gorantla VR, Bishir M, Rashan L, Chang SL, Sakharkar MK, Yang J, Chidambaram SB. Trimethylamine-N-oxide and cerebral stroke risk: A review. Neurobiol Dis 2024; 192:106423. [PMID: 38286388 DOI: 10.1016/j.nbd.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono‑oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.
Collapse
Affiliation(s)
- Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John's, Po Box W-1451, Antigua and Barbuda
| | | | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Naveen Kumar Krishnamoorthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Biomedical sciences, Research Faculty, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah, Sultanate of Oman
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Meena Kishore Sakharkar
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jian Yang
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
9
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Farahmand Y, Nabiuni M, Vafaei Mastanabad M, Sheibani M, Mahmood BS, Obayes AM, Asadi F, Davallou R. The exo-microRNA (miRNA) signaling pathways in pathogenesis and treatment of stroke diseases: Emphasize on mesenchymal stem cells (MSCs). Cell Biochem Funct 2024; 42:e3917. [PMID: 38379232 DOI: 10.1002/cbf.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
A major factor in long-term impairment is stroke. Patients with persistent stroke and severe functional disabilities have few therapy choices. Long noncoding RNAs (lncRNAs) may contribute to the regulation of the pathophysiologic processes of ischemic stroke as shown by altered expression of lncRNAs and microRNA (miRNAs) in blood samples of acute ischemic stroke patients. On the other hand, multipotent mesenchymal stem cells (MSCs) increase neurogenesis, and angiogenesis, dampen neuroinflammation, and boost brain plasticity to improve functional recovery in experimental stroke models. MSCs can be procured from various sources such as the bone marrow, adipose tissue, and peripheral blood. Under the proper circumstances, MSCs can differentiate into a variety of mature cells, including neurons, astrocytes, and oligodendrocytes. Accordingly, the capability of MSCs to exert neuroprotection and also neurogenesis has recently attracted more attention. Nowadays, lncRNAs and miRNAs derived from MSCs have opened new avenues to alleviate stroke symptoms. Accordingly, in this review article, we examined various studies concerning the lncRNAs and miRNAs' role in stroke pathogenesis and delivered an overview of the therapeutic role of MSC-derived miRNAs and lncRNAs in stroke conditions.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabiuni
- Neurosurgery Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ali Mohammed Obayes
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Fatemeh Asadi
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Rosa Davallou
- Department of Neurology, Sayyad Shirazi Hospital, Golestan University of Medical Siences, Gorgan, Iran
| |
Collapse
|
11
|
Bill RM. Drugging aquaporins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184164. [PMID: 37146744 DOI: 10.1016/j.bbamem.2023.184164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Water is essential for all life because it is required for the proper functioning of the cells and tissues of all organisms. It crosses biological membranes down osmotic gradients through the pores of aquaporin membrane channels at rates of up to 3 billion molecules per second. In the twenty years since Peter Agre was awarded the 2003 Nobel Prize in Chemistry for the discovery of the aquaporin family, aquaporin structure and function have become established in the literature. As a consequence, we understand in fine detail the mechanism by which aquaporins facilitate membrane water flow while excluding protons. We also know that some aquaporins facilitate the permeation of other small neutral solutes, ions or even unexpected substrates across biological membranes. The thirteen aquaporins in the human body have been implicated in pathologies including oedema, epilepsy, cancer cell migration, tumour angiogenesis, metabolic disorders and inflammation. Surprisingly, however, there is no aquaporin-targeted drug in the clinic. Some scientists have therefore concluded that aquaporins are intrinsically non-druggable targets. Discovering medicines to treat disorders of water homeostasis is thus an enduring challenge for the aquaporin field. Success in this endeavour will meet the urgent clinical need of millions of patients suffering from a range of life-threatening conditions and for whom no pharmacological interventions are currently available.
Collapse
Affiliation(s)
- Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
12
|
Feng S, Yang M, Liu S, He Y, Deng S, Gong Y. Oxidative stress as a bridge between age and stroke: A narrative review. JOURNAL OF INTENSIVE MEDICINE 2023; 3:313-319. [PMID: 38028635 PMCID: PMC10658045 DOI: 10.1016/j.jointm.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 12/01/2023]
Abstract
Stroke is the third most common cause of death globally and a leading cause of disability. The cellular and molecular changes following stroke and causes of neuronal death are not fully understood, and there are few effective treatments currently available. A rapid increase in the levels of reactive oxygen species (ROS) post stroke can overwhelm antioxidant defenses and trigger a series of pathophysiologic events including the inflammatory response, blood-brain barrier (BBB) disruption, apoptosis, and autophagy, ultimately leading to neuron degeneration and apoptosis. It is thought that beyond a certain age, the ROS accumulation resulting from stroke increases the risk of morbidity and mortality. In the present review, we summarize the role of oxidative stress (OS) as a link between aging and stroke pathogenesis. We also discuss how antioxidants can play a beneficial role in the prevention and treatment of stroke by eliminating harmful ROS, delaying aging, and alleviating damage to neurons.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Miaoxian Yang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shengpeng Liu
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020,China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
14
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
15
|
Hu X, Liang J, Hao W, Zhou J, Gao Y, Gong X, Liu Y. Prognostic value of inflammatory markers for in-hospital mortality in intensive care patients with acute ischemic stroke: a retrospective observational study based on MIMIC-IV. Front Neurol 2023; 14:1174711. [PMID: 37360337 PMCID: PMC10285211 DOI: 10.3389/fneur.2023.1174711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Background Acute ischemic stroke (AIS) is a primary cause of death and disability worldwide. Four markers that can be readily determined from peripheral blood, namely, the systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and total bilirubin, were measured in this study. We examined the relationship between the SII and in-hospital mortality after AIS and evaluated which of the above four indicators was most accurate for predicting in-hospital mortality after AIS. Methods We selected patients from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database who were aged >18 years and who were diagnosed with AIS on admission. We collected the patients' baseline characteristics, including various clinical and laboratory data. To investigate the relationship between the SII and in-hospital mortality in patients with AIS, we employed the generalized additive model (GAM). Differences in in-hospital mortality between the groups were summarized by the Kaplan-Meier survival analysis and the log-rank test. The receiver operating characteristic (ROC) curve analysis was used to assess the accuracy of the four indicators (SII, NLR, PLR, and total bilirubin) for predicting in-hospital mortality in patients with AIS. Results The study included 463 patients, and the in-hospital mortality rate was 12.31%. The GAM analysis showed a positive correlation between the SII and in-hospital mortality in patients with AIS, but the correlation was not linear. Unadjusted Cox regression identified a link between a high SII and an increased probability of in-hospital mortality. We also found that patients with an SII of >1,232 (Q2 group) had a considerably higher chance of in-hospital mortality than those with a low SII (Q1 group). The Kaplan-Meier analysis demonstrated that patients with an elevated SII had a significantly lower chance of surviving their hospital stay than those with a low SII. According to the results of the ROC curve analysis, the in-hospital mortality of patients with AIS predicted by the SII had an area under the ROC curve of 0.65, which revealed that the SII had a better discriminative ability than the NLR, PLR, and total bilirubin. Conclusion The in-hospital mortality of patients with AIS and the SII were positively correlated, but not linearly. A high SII was associated with a worse prognosis in patients with AIS. The SII had a modest level of discrimination for forecasting in-hospital mortality. The SII was slightly better than the NLR and significantly better than the PLR and total bilirubin for predicting in-hospital mortality in patients with AIS.
Collapse
Affiliation(s)
- Xuyang Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jiaru Liang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wenjian Hao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jiaqi Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuling Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyang Gong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yong Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Qin Y, Li X, Qiao Y, Zou H, Qian Y, Li X, Zhu Y, Huo W, Wang L, Zhang M. DTI-ALPS: An MR biomarker for motor dysfunction in patients with subacute ischemic stroke. Front Neurosci 2023; 17:1132393. [PMID: 37065921 PMCID: PMC10102345 DOI: 10.3389/fnins.2023.1132393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
PurposeBrain glymphatic dysfunction is involved in the pathologic process of acute ischemic stroke (IS). The relationship between brain glymphatic activity and dysfunction in subacute IS has not been fully elucidated. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was used in this study to explore whether glymphatic activity was related to motor dysfunction in subacute IS patients.MethodsTwenty-six subacute IS patients with a single lesion in the left subcortical region and 32 healthy controls (HCs) were recruited in this study. The DTI-ALPS index and DTI metrics (fractional anisotropy, FA, and mean diffusivity, MD) were compared within and between groups. Spearman's and Pearson's partial correlation analyses were performed to analyze the relationships of the DTI-ALPS index with Fugl-Meyer assessment (FMA) scores and with corticospinal tract (CST) integrity in the IS group, respectively.ResultsSix IS patients and two HCs were excluded. The left DTI-ALPS index of the IS group was significantly lower than that of the HC group (t = −3.02, p = 0.004). In the IS group, a positive correlation between the left DTI-ALPS index and the simple Fugl-Meyer motor function score (ρ = 0.52, p = 0.019) and a significant negative correlation between the left DTI-ALPS index and the FA (R = −0.55, p = 0.023) and MD (R = −0.48, p = 0.032) values of the right CST were found.ConclusionsGlymphatic dysfunction is involved in subacute IS. DTI-ALPS could be a potential magnetic resonance (MR) biomarker of motor dysfunction in subacute IS patients. These findings contribute to a better understanding of the pathophysiological mechanisms of IS and provide a new target for alternative treatments for IS.
Collapse
Affiliation(s)
- Yue Qin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xin Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yanqiang Qiao
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Huili Zou
- Department of Rehabilitation Medicine, Xi'an Daxing Hospital, Xi'an, China
| | - Yifan Qian
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xiaoshi Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yinhu Zhu
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Wenli Huo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
- Lei Wang
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Ming Zhang
| |
Collapse
|
17
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Amini H, Knepp B, Rodriguez F, Jickling GC, Hull H, Carmona-Mora P, Bushnell C, Ander BP, Sharp FR, Stamova B. Early peripheral blood gene expression associated with good and poor 90-day ischemic stroke outcomes. J Neuroinflammation 2023; 20:13. [PMID: 36691064 PMCID: PMC9869610 DOI: 10.1186/s12974-022-02680-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND This study identified early immune gene responses in peripheral blood associated with 90-day ischemic stroke (IS) outcomes. METHODS Peripheral blood samples from the CLEAR trial IS patients at ≤ 3 h, 5 h, and 24 h after stroke were compared to vascular risk factor matched controls. Whole-transcriptome analyses identified genes and networks associated with 90-day IS outcome assessed using the modified Rankin Scale (mRS) and the NIH Stroke Scale (NIHSS). RESULTS The expression of 467, 526, and 571 genes measured at ≤ 3, 5 and 24 h after IS, respectively, were associated with poor 90-day mRS outcome (mRS ≥ 3), while 49, 100 and 35 genes at ≤ 3, 5 and 24 h after IS were associated with good mRS 90-day outcome (mRS ≤ 2). Poor outcomes were associated with up-regulated genes or pathways such as IL-6, IL-7, IL-1, STAT3, S100A12, acute phase response, P38/MAPK, FGF, TGFA, MMP9, NF-kB, Toll-like receptor, iNOS, and PI3K/AKT. There were 94 probe sets shared for poor outcomes vs. controls at all three time-points that correlated with 90-day mRS; 13 probe sets were shared for good outcomes vs. controls at all three time-points; and 46 probe sets were shared for poor vs. good outcomes at all three time-points that correlated with 90-day mRS. Weighted Gene Co-Expression Network Analysis (WGCNA) revealed modules significantly associated with 90-day outcome for mRS and NIHSS. Poor outcome modules were enriched with up-regulated neutrophil genes and with down-regulated T cell, B cell and monocyte-specific genes; and good outcome modules were associated with erythroblasts and megakaryocytes. Finally, genes identified by genome-wide association studies (GWAS) to contain significant stroke risk loci or loci associated with stroke outcome including ATP2B, GRK5, SH3PXD2A, CENPQ, HOXC4, HDAC9, BNC2, PTPN11, PIK3CG, CDK6, and PDE4DIP were significantly differentially expressed as a function of stroke outcome in the current study. CONCLUSIONS This study suggests the immune response after stroke may impact functional outcomes and that some of the early post-stroke gene expression markers associated with outcome could be useful for predicting outcomes and could be targets for improving outcomes.
Collapse
Affiliation(s)
- Hajar Amini
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Bodie Knepp
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Fernando Rodriguez
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Glen C. Jickling
- grid.17089.370000 0001 2190 316XDivision of Neurology, University of Alberta, Edmonton, AB Canada
| | - Heather Hull
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Paulina Carmona-Mora
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Cheryl Bushnell
- grid.241167.70000 0001 2185 3318Wake Forest University School of Medicine, Winston Salem, NC USA
| | - Bradley P. Ander
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Frank R. Sharp
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| | - Boryana Stamova
- grid.413079.80000 0000 9752 8549Department of Neurology, University of California at Davis, MIND Institute Biosciences Building Room 2417, 2805 50th Street, Sacramento, CA USA
| |
Collapse
|
19
|
Meng D, Li Y, Ju T, Huo W, Wang M. Low MHR Is Associated with Hemorrhagic Transformation in Acute Large Artery Atherosclerosis Ischemic Stroke Patients with Intravenous Thrombolysis. Clin Appl Thromb Hemost 2023; 29:10760296231167849. [PMID: 37083013 PMCID: PMC10126604 DOI: 10.1177/10760296231167849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Hemorrhagic transformation (HT) is a common complication of intravenous thrombolysis (IVT) in patients with acute ischemic stroke (AIS) and may lead to neurological deterioration. This article discusses whether monocyte count to high-density lipoprotein ratio (MHR) level is associated with HT in AIS patients. Materials and methods: The clinical data of AIS patients who underwent rt-PA IVT treatment were continuously collected. According to whether HT occurred, patients were divided into HT group and non-HT group. Potential association between MHR and HT in different subtypes AIS was explored by using logistic regression. Results: A total of 444 AIS patients were retrospective analyzed. The MHR level was lower in HT group compared with the non-HT group in all AIS patients (0.28 vs 0.36, P = .031) and in large-artery atherosclerosis (LAA) type AIS patients (0.31 vs 0.37, P = .032). Low MHR was independently related to HT (OR:0.035, 95%CI:0.003-0.390, P = .006). Among all TOAST subtypes, low MHR was only independently associated with HT in patients of LAA-type AIS after adjusting for confounding factors (OR:0.01, 95%CI:0.00-0.62, P = .031), with an optimal cut-off value of 0.41, sensitivity of 85.7%, and specificity of 43.1%. MHR was not correlated with SVO, VE, and CE subtype AIS. Conclusion: Low MHR may be an independent predictor of HT in patients with AIS and this conclusion only existed in LAA-type AIS.
Collapse
Affiliation(s)
- Delong Meng
- Department of Neurology, The first affiliated hospital of Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Neurology, The first affiliated hospital of Harbin Medical University, Harbin, China
| | - Ting Ju
- Department of Neurology, The first affiliated hospital of Harbin Medical University, Harbin, China
| | - Wei Huo
- Department of Neurology, The first affiliated hospital of Harbin Medical University, Harbin, China
| | - Mingfei Wang
- Department of Neurology, The first affiliated hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Pinčáková K, Krastev G, Haring J, Mako M, Mikulášková V, Bošák V. Low Lymphocyte-to-Monocyte Ratio as a Possible Predictor of an Unfavourable Clinical Outcome in Patients with Acute Ischemic Stroke after Mechanical Thrombectomy. Stroke Res Treat 2022; 2022:9243080. [PMID: 36536620 PMCID: PMC9759396 DOI: 10.1155/2022/9243080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 09/10/2024] Open
Abstract
Background Although considerable progress has been made in the treatment of acute ischemic stroke (AIS), the clinical outcome of patients is still significantly influenced by the inflammatory response that follows stroke-induced brain injury. The aim of this study was to evaluate the potential use of complete blood count parameters, including indices and ratios, for predicting the clinical outcome in AIS patients undergoing mechanical thrombectomy (MT). Methods This single-centre retrospective study is consisted of 179 patients. Patient data including demographic characteristics, risk factors, clinical data, laboratory parameters on admission, and clinical outcome were collected. Based on the clinical outcome assessed at 3 months after MT by the modified Rankin Scale (mRS), patients were divided into two groups: the favourable group (mRS 0-2) and unfavourable group (mRS 3-6). Stepwise multivariate logistic regression analysis was used to detect an independent predictor of the unfavourable clinical outcome. Results An unfavourable clinical outcome was detected after 3 months in 101 patients (54.4%). Multivariate logistic regression analysis confirmed that the lymphocyte-to-monocyte ratio (LMR) was an independent predictor of unfavourable clinical outcome at 3 months (odds ratio = 0.761, 95% confidence interval 0.625-0.928, and P = 0.007). The value of 3.27 was chosen to be the optimal cut-off value of LMR. This value could predict the unfavourable clinical outcome with a 74.0% sensitivity and a 54.4% specificity. Conclusion The LMR at the time of hospital admission is a predictor of an unfavourable clinical outcome at 3 months in AIS patients after MT.
Collapse
Affiliation(s)
- Katarína Pinčáková
- Department of Laboratory Medicine, Faculty of Health and Social Care, Trnava University in Trnava, 918 43 Trnava, Slovakia
- Department of Haematology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
| | - Georgi Krastev
- Jessenius Medical Faculty in Martin, Comenius University in Bratislava, 036 01 Martin-Záturčie, Slovakia
- Department of Neurology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
| | - Jozef Haring
- Department of Neurology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Miroslav Mako
- Jessenius Medical Faculty in Martin, Comenius University in Bratislava, 036 01 Martin-Záturčie, Slovakia
- Department of Neurology, Faculty Hospital Trnava, 917 75 Trnava, Slovakia
| | - Viktória Mikulášková
- Department of Laboratory Medicine, Faculty of Health and Social Care, Trnava University in Trnava, 918 43 Trnava, Slovakia
| | - Vladimír Bošák
- Department of Laboratory Medicine, Faculty of Health and Social Care, Trnava University in Trnava, 918 43 Trnava, Slovakia
| |
Collapse
|
21
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
22
|
Xia L, Xu T, Zhan Z, Wu Y, Xu Y, Cao Y, Han Z. High ratio of monocytes to high-density lipoprotein is associated with hemorrhagic transformation in acute ischemic stroke patients on intravenous thrombolysis. Front Aging Neurosci 2022; 14:977332. [PMID: 36051305 PMCID: PMC9424860 DOI: 10.3389/fnagi.2022.977332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHemorrhagic transformation (HT) is a frequent, serious complication in acute ischemic stroke patients on intravenous thrombolysis. Here we investigated whether risk of HT is associated with the ratio of monocyte count to high-density lipoprotein level (MHR).Materials and methodsMedical records were retrospectively examined for consecutive patients with acute ischemic stroke who received thrombolytic therapy. HT was diagnosed by computed tomography at 24–36 h after therapy. Potential association between MHR and HT was examined using logistic regression.ResultsA total of 340 patients were analyzed, and their median MHR was 0.44 (0.31–0.59). MHR was higher in the 51 patients (15.0%) with HT than in those who did not suffer HT (0.53 vs. 0.42, P = 0.001). Multivariate logistic regression showed that, after adjusting for potential confounders, MHR was an independent risk factor for HT (OR 7.50, 95% CI 1.64 to 34.35, P = 0.009). Risk of HT was significantly higher among patients whose MHR fell in the third quartile (0.42–0.53) and the fourth quartile (> 0.53) than among those with MHR in the first quartile (< 0.31; OR 3.53, 95% CI 1.11 to 11.20, P = 0.032; OR 4.79, 95% CI 1.49 to 15.42, P = 0.009).ConclusionHigh MHR may be independently associated with higher risk of HT in patients with acute ischemic stroke on intravenous thrombolysis.
Collapse
|
23
|
Andjelkovic AV, Keep RF, Wang MM. Molecular Mechanisms of Cerebrovascular Diseases. Int J Mol Sci 2022; 23:ijms23137161. [PMID: 35806164 PMCID: PMC9266541 DOI: 10.3390/ijms23137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Correspondence:
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Michael M. Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Keep RF, Jones HC, Drewes LR. Advances in brain barriers and brain fluids research in 2021: great progress in a time of adversity. Fluids Barriers CNS 2022; 19:48. [PMID: 35681151 PMCID: PMC9178944 DOI: 10.1186/s12987-022-00343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
This editorial highlights advances in brain barrier and brain fluid research in 2021. It covers research on components of the blood–brain barrier, neurovascular unit and brain fluid systems; how brain barriers and brain fluid systems are impacted by neurological disorders and their role in disease progression; and advances in strategies for treating such disorders.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
25
|
Ischemic Brain Stroke and Mesenchymal Stem Cells: An Overview of Molecular Mechanisms and Therapeutic Potential. Stem Cells Int 2022; 2022:5930244. [PMID: 35663353 PMCID: PMC9159823 DOI: 10.1155/2022/5930244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/12/2021] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic brain injury is associated with a high rate of mortality and disability with no effective therapeutic strategy. Recently, a growing number of studies are focusing on mesenchymal stem cell-based therapies for neurodegenerative disorders. However, despite having the promising outcome of preclinical studies, the clinical application of stem cell therapy remained elusive due to little or no progress in clinical trials. The objective of this study was to provide a generalized critique for the role of mesenchymal stem cell therapy in ischemic stroke injury, its underlying mechanisms, and constraints on its preclinical and clinical applications. Thus, we attempted to present an overview of previously published reports to evaluate the progress and provide molecular basis of mesenchymal stem cells (MSCs) therapy and its application in preclinical and clinical settings, which could aid in designing an effective regenerative therapeutic strategy in the future.
Collapse
|
26
|
Bourhy L, Mazeraud A, Bozza FA, Turc G, Lledo PM, Sharshar T. Neuro-Inflammatory Response and Brain-Peripheral Crosstalk in Sepsis and Stroke. Front Immunol 2022; 13:834649. [PMID: 35464410 PMCID: PMC9022190 DOI: 10.3389/fimmu.2022.834649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
Despite recent therapeutic advances, ischemic stroke is still a leading cause of death and disability. There is renewed attention on peripheral inflammatory signaling as a way of modulating the post-ischemic neuro-inflammatory process. The immune-brain crosstalk has long been the focus for understanding the mechanisms of sickness behavior, which is an adaptive autonomic, neuroendocrine, and behavioral response to a peripheral inflammation. It is mediated by humoral and neural pathways that mainly involve the circumventricular organs and vagal nerve, respectively. In this review we address the question of how sepsis and stroke can dysregulate this adaptive response, notably by impairing the central integration of peripheral signaling, but also by efferent control of the immune response. We highlight the potential role of gut-brain and brain-spleen signaling in stroke.
Collapse
Affiliation(s)
- Lena Bourhy
- Institut Pasteur, Université de Paris, Centre National de Recherche Scientifique, Unité Mixte de Recherche (CNRS UMR) 3571, Perception and Memory Unit, Paris, France
| | - Aurélien Mazeraud
- Institut Pasteur, Université de Paris, Centre National de Recherche Scientifique, Unité Mixte de Recherche (CNRS UMR) 3571, Perception and Memory Unit, Paris, France
- Neuro-Anesthesiology and Intensive Care Medicine, Groupe Hospitalier Universitaire (GHU) Paris Psychiatrie et Neurosciences, Université de Paris, Paris, France
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Guillaume Turc
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Université de Paris, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université de Paris, Centre National de Recherche Scientifique, Unité Mixte de Recherche (CNRS UMR) 3571, Perception and Memory Unit, Paris, France
| | - Tarek Sharshar
- Neuro-Anesthesiology and Intensive Care Medicine, Groupe Hospitalier Universitaire (GHU) Paris Psychiatrie et Neurosciences, Université de Paris, Paris, France
| |
Collapse
|
27
|
Salman MM, Kitchen P, Yool AJ, Bill RM. Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci 2022; 43:30-42. [PMID: 34863533 DOI: 10.1016/j.tips.2021.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Aquaporins facilitate the passive transport of water, solutes, or ions across biological membranes. They are implicated in diverse pathologies including brain edema following stroke or trauma, epilepsy, cancer cell migration and tumor angiogenesis, metabolic disorders, and inflammation. Despite this, there is no aquaporin-targeted drug in the clinic and aquaporins have been perceived to be intrinsically non-druggable targets. Here we challenge this idea, as viable routes to inhibition of aquaporin function have recently been identified, including targeting their regulation or their roles as channels for unexpected substrates. Identifying new drug development frameworks for conditions associated with disrupted water and solute homeostasis will meet the urgent, unmet clinical need of millions of patients for whom no pharmacological interventions are available.
Collapse
Affiliation(s)
- Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience Discovery, University of Oxford, Oxford OX1 3PT, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.
| | - Philip Kitchen
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Andrea J Yool
- University of Adelaide, School of Biomedicine, Adelaide, South Australia 5005, Australia.
| | - Roslyn M Bill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
28
|
Cell Therapy of Stroke: Do the Intra-Arterially Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Cells 2021; 10:cells10112997. [PMID: 34831220 PMCID: PMC8616541 DOI: 10.3390/cells10112997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.
Collapse
|