1
|
Roehm KD, Chiesa I, Haithcock D, Gottardi R, Prabhakarpandian B. A vascularized microfluidic model of the osteochondral unit for modeling inflammatory response and therapeutic screening. LAB ON A CHIP 2024. [PMID: 39715348 DOI: 10.1039/d4lc00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types. We have characterized the model in terms of differentiation by molecule and matrix secretion and shown that it demonstrates morphology and functionality that mimic the native characteristic of the joint space. Finally, we induced inflammation and subsequently rescued the model constructs by a known compound as proof of concept for anti-inflammatory drug screening applications.
Collapse
Affiliation(s)
- Kevin D Roehm
- CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
| | - Irene Chiesa
- Department of Information Engineering and Research Center "Enrico Piaggio", University of Pisa, Italy
- Division of Otolaryngology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dustin Haithcock
- CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
| | - Riccardo Gottardi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Division of Otolaryngology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Ri.MED Foundation, Palermo, Italy
| | | |
Collapse
|
2
|
Salehi S, Brambilla S, Rasponi M, Lopa S, Moretti M. Development of a Microfluidic Vascularized Osteochondral Model as a Drug Testing Platform for Osteoarthritis. Adv Healthc Mater 2024; 13:e2402350. [PMID: 39370575 DOI: 10.1002/adhm.202402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/17/2024] [Indexed: 10/08/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by changes in cartilage and subchondral bone. To date, there are no available drugs that can counteract the progression of OA, partly due to the inadequacy of current models to recapitulate the relevant cellular complexity. In this study, an osteochondral microfluidic model is developed using human primary cells to mimic an OA-like microenvironment and this study validates it as a drug testing platform. In the model, the cartilage compartment is created by embedding articular chondrocytes in fibrin hydrogel while the bone compartment is obtained by embedding osteoblasts, osteoclasts, endothelial cells, and mesenchymal stem cells in a fibrin hydrogel enriched with calcium phosphate nanoparticles. After developing and characterizing the model, Interleukin-1β is applied to induce OA-like conditions. Subsequently, the model potential is evaluated as a drug testing platform by assessing the effect of two anti-inflammatory drugs (Interleukin-1 Receptor antagonist and Celecoxib) on the regulation of inflammation- and matrix degradation-related markers. The model responded to inflammation and demonstrated differences in drug efficacy. Finally, it compares the behavior of the "Cartilage" and "Cartilage+Bone" models, emphasizing the necessity of incorporating both cartilage and bone compartments to capture the complex pathophysiology of OA.
Collapse
Affiliation(s)
- Shima Salehi
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
| | - Stefania Brambilla
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Via Chiesa 5, Bellinzona, 6500, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Via Tesserete 46, Lugano, 6900, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Via Buffi 13, Lugano, 6900, Switzerland
| |
Collapse
|
3
|
Zhao Z, Sun X, Tu P, Ma Y, Guo Y, Zhang Y, Liu M, Wang L, Chen X, Si L, Li G, Pan Y. Mechanisms of vascular invasion after cartilage injury and potential engineering cartilage treatment strategies. FASEB J 2024; 38:e23559. [PMID: 38502020 DOI: 10.1096/fj.202302391rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.
Collapse
Affiliation(s)
- Zitong Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoxian Sun
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Pengcheng Tu
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yang Guo
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lining Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xinyu Chen
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lin Si
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Guangguang Li
- Orthopedics and traumatology department, Yixing Traditional Chinese Medicine Hospital, Yixing, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
4
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
5
|
Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022; 11:cells11244034. [PMID: 36552796 PMCID: PMC9777397 DOI: 10.3390/cells11244034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.
Collapse
|
6
|
Sheng R, Chen J, Wang H, Luo Y, Liu J, Chen Z, Mo Q, Chi J, Ling C, Tan X, Yao Q, Zhang W. Nanosilicate-Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone. Adv Healthc Mater 2022; 11:e2200602. [PMID: 35749970 DOI: 10.1002/adhm.202200602] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Osteochondral defects are characterized by injuries to both cartilage and subchondral bone, which is a result of trauma, inflammation, or inappropriate loading. Due to the unique biological properties of subchondral bone and cartilage, developing a tissue engineering scaffold that can promote dual-lineage regeneration of cartilage and bone simultaneously remains a great challenge. In this study, a microporous nanosilicate-reinforced enzymatically crosslinked silk fibroin (SF) hydrogel is fabricated by introducing montmorillonite (MMT) nanoparticles via intercalation chemistry. In vitro studies show that SF-MMT nanocomposite hydrogel has improved mechanical properties and hydrophilicity, as well as the bioactivities to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and maintain chondrocyte phenotype compared with SF hydrogel. Global proteomic analysis verifies the dual-lineage bioactivities of SF-MMT nanocomposite hydrogel, which are probably regulated by multiple signaling pathways. Furthermore, it is observed that the biophysical interaction of cells and SF-MMT nanocomposite hydrogel is partially mediated by clathrin-mediated endocytosis and its downstream processes. In vivo, the SF-MMT nanocomposite hydrogel effectively promotes osteochondral regeneration as evidenced by macroscopic, micro-CT, and histological evaluation. In conclusion, a functionalized SF-MMT nanocomposite hydrogel is developed with dual-lineage bioactivity for osteochondral regeneration, indicating its potential in osteochondral tissue engineering.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yifan Luo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jiayu Chi
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xin Tan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qingqiang Yao
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China.,Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
7
|
Muenzebrock KA, Kersten V, Alblas J, Garcia JP, Creemers LB. The Added Value of the “Co” in Co-Culture Systems in Research on Osteoarthritis Pathology and Treatment Development. Front Bioeng Biotechnol 2022; 10:843056. [PMID: 35309991 PMCID: PMC8927651 DOI: 10.3389/fbioe.2022.843056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent disease and a major health burden. Its development and progression are influenced by factors such as age, obesity or joint overuse. As a whole organ disease OA affects not only cartilage, bone and synovium but also ligaments, fatty or nervous tissue surrounding the joint. These joint tissues interact with each other and understanding this interaction is important in developing novel treatments. To incorporate and study these interactions in OA research, several co-culture models have evolved. They combine two or more cell types or tissues and investigate the influence of amongst others inflammatory or degenerative stimuli seen in OA. This review focuses on co-cultures and the differential processes occurring in a given tissue or cell as a consequence of being combined with another joint cell type or tissue, and/or the extent to which a co-culture mimics the in vivo processes. Most co-culture models depart from synovial lining and cartilage culture, but also fat pad and bone have been included. Not all of the models appear to reflect the postulated in vivo OA pathophysiology, although some of the discrepancies may indicate current assumptions on this process are not entirely valid. Systematic analysis of the mutual influence the separate compartments in a given model exert on each other and validation against in vivo or ex vivo observation is still largely lacking and would increase their added value as in vitro OA models.
Collapse
|
8
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|