1
|
Furniss JA, Tarassova N, Poole AW. Platelet generation in vivo and in vitro. Blood 2024; 144:2283-2294. [PMID: 39357055 DOI: 10.1182/blood.2024024601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Platelets play crucial roles in hemostasis, thrombosis, and immunity, but our understanding of their complex biogenesis (thrombopoiesis) is currently incomplete. Deeper insight into the mechanisms of platelet biogenesis inside and outside the body is fundamental for managing hematological disorders and for the development of novel cell-based therapies. In this article, we address the current understanding of in vivo thrombopoiesis, including mechanisms of platelet generation from megakaryocytes (proplatelet formation, cytoplasmic fragmentation, and membrane budding) and their physiological location. Progress has been made in replicating these processes in vitro for potential therapeutic application, notably in platelet transfusion and bioengineering of platelets for novel targeted therapies. The current platelet-generating systems and their limitations, particularly yield, scalability, and functionality, are discussed. Finally, we highlight the current controversies and challenges in the field that need to be addressed to achieve a full understanding of these processes, in vivo and in vitro.
Collapse
Affiliation(s)
- Jonathan A Furniss
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Nathalie Tarassova
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Khazali AS, Hadrawi WH, Ibrahim F, Othman S, Nor Rashid N. Thrombocytopenia in dengue infection: mechanisms and a potential application. Expert Rev Mol Med 2024; 26:e26. [PMID: 39397710 PMCID: PMC11488332 DOI: 10.1017/erm.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 10/15/2024]
Abstract
Thrombocytopenia is a common symptom and one of the warning signs of dengue virus (DENV) infection. Platelet depletion is critical as it may lead to other severe dengue symptoms. Understanding the molecular events of this condition during dengue infection is challenging because of the multifaceted factors involved in DENV infection and the dynamics of the disease progression. Platelet levels depend on the balance between platelet production and platelet consumption or clearance. Megakaryopoiesis and thrombopoiesis, two interdependent processes in platelet production, are hampered during dengue infection. Conversely, platelet elimination via platelet activation, apoptosis and clearance processes are elevated. Together, these anomalies contribute to thrombocytopenia in dengue patients. Targeting the molecular events of dengue-mediated thrombocytopenia shows great potential but still requires further investigation. Nonetheless, the application of new knowledge in this field, such as immature platelet fraction analysis, may facilitate physicians in monitoring the progression of the disease.
Collapse
Affiliation(s)
- Ahmad Suhail Khazali
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Perlis, Arau, Perlis, Malaysia
| | - Waqiyuddin Hilmi Hadrawi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Xu B, Ye X, Wen Z, Chen S, Wang J. Epigenetic regulation of megakaryopoiesis and platelet formation. Haematologica 2024; 109:3125-3137. [PMID: 38867584 PMCID: PMC11443398 DOI: 10.3324/haematol.2023.284951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/14/2024] Open
Abstract
Platelets, produced by megakaryocytes, play unique roles in physiological processes, such as hemostasis, coagulation, and immune regulation, while also contributing to various clinical diseases. During megakaryocyte differentiation, the morphology and function of cells undergo significant changes due to the programmed expression of a series of genes. Epigenetic changes modify gene expression without altering the DNA base sequence, effectively affecting the inner workings of the cell at different stages of growth, proliferation, differentiation, and apoptosis. These modifications also play important roles in megakaryocyte development and platelet biogenesis. However, the specific mechanisms underlying epigenetic processes and the vast epigenetic regulatory network formed by their interactions remain unclear. In this review, we systematically summarize the key roles played by epigenetics in megakaryocyte development and platelet formation, including DNA methylation, histone modification, and non-coding RNA regulation. We expect our review to provide a deeper understanding of the biological processes underlying megakaryocyte development and platelet formation and to inform the development of new clinical interventions aimed at addressing platelet-related diseases and improving patients' prognoses.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038.
| |
Collapse
|
5
|
Hussain MA, Das SP, Kulkarni M, Laha S. A review on the functional characteristics of the c-Myeloproliferative Leukaemia (c-MPL) gene and its isoforms. Cell Oncol (Dordr) 2024; 47:1607-1626. [PMID: 39283476 DOI: 10.1007/s13402-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/11/2024] Open
Abstract
The c-MPL-TPO axis regulates hematopoiesis by activating various signalling cascades, including JAK/STAT, MAPK/ERK, and PIK3/AKT. Here, we have summarized how TPO is regulated by c-MPL and, how mutations in the c-MPL regulate hematopoiesis. We also focus on its non-hematological regulatory role in diseases like Unstable Angina and pathways like DNA damage repair, skeletal homeostasis, & apoptotic regulation of neurons/HSCs at the embryonic state. We discuss the therapeutic efficiency of c-MPL and, its potential to be developed as a bio-marker for detecting metastasis and development of chemo-resistance in various cancers, justifying the multifaceted nature of c-MPL. We have also highlighted the importance of c-MPL isoforms and their stoichiometry in controlling the HSC quiescent and proliferative state. The regulation of the ratio of different isoforms through gene-therapy can open future therapeutic avenues. A systematic understanding of c-MPL-isoforms would undoubtedly take one step closer to facilitating c-MPL from basic-research towards translational medicine.
Collapse
Affiliation(s)
- Mohammad Amjad Hussain
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Mithila Kulkarni
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
6
|
Eftekhar Z, Aghaei M, Saki N. DNA damage repair in megakaryopoiesis: molecular and clinical aspects. Expert Rev Hematol 2024; 17:705-712. [PMID: 39117495 DOI: 10.1080/17474086.2024.2391102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Endogenous DNA damage is a significant factor in the damage of hematopoietic cells. Megakaryopoiesis is one of the pathways of hematopoiesis that ends with the production of platelets and plays the most crucial role in hemostasis. Despite the presence of efficient DNA repair mechanisms, some endogenous lesions can lead to mutagenic alterations, disruption of pathways of hematopoiesis including megakaryopoiesis and potentially result in human diseases. AREAS COVERED The complex regulation of DNA repair mechanisms plays a central role in maintaining genomic integrity during megakaryopoiesis and influences platelet production efficiency and quality. Moreover, anomalies in DNA repair processes are involved in several diseases associated with megakaryopoiesis, including myeloproliferative disorders and thrombocytopenia. EXPERT OPINION In the era of personalized medicine, diagnosing diseases related to megakaryopoiesis can only be made with a complete assessment of their molecular aspects to provide physicians with critical molecular data for patient management and to identify the subset of patients who could benefit from targeted therapy.
Collapse
Affiliation(s)
- Zeinab Eftekhar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Pirotton L, de Cartier d’Yves E, Bertrand L, Beauloye C, Horman S. Platelet lipidomics and de novo lipogenesis: impact on health and disease. Curr Opin Hematol 2024; 31:217-223. [PMID: 38727017 PMCID: PMC11296274 DOI: 10.1097/moh.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Lipids play vital roles in platelet structure, signaling, and metabolism. In addition to capturing exogenous lipids, platelets possess the capacity for de novo lipogenesis, regulated by acetyl-coA carboxylase 1 (ACC1). This review aims to cover the critical roles of platelet de novo lipogenesis and lipidome in platelet production, function, and diseases. RECENT FINDINGS Upon platelet activation, approximately 20% of the platelet lipidome undergoes significant modifications, primarily affecting arachidonic acid-containing species. Multiple studies emphasize the impact of de novo lipogenesis, with ACC1 as key player, on platelet functions. Mouse models suggest the importance of the AMPK-ACC1 axis in regulating platelet membrane arachidonic acid content, associated with TXA 2 secretion, and thrombus formation. In human platelets, ACC1 inhibition leads to reduced platelet reactivity. Remodeling of the platelet lipidome, alongside with de novo lipogenesis, is also crucial for platelet biogenesis. Disruptions in the platelet lipidome are observed in various pathological conditions, including cardiovascular and inflammatory diseases, with associations between these alterations and shifts in platelet reactivity highlighted. SUMMARY The platelet lipidome, partially regulated by ACC-driven de novo lipogenesis, is indispensable for platelet production and function. It is implicated in various pathological conditions involving platelets.
Collapse
Affiliation(s)
- Laurence Pirotton
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Emma de Cartier d’Yves
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| |
Collapse
|
8
|
Metwali WA, Elmashad AM, Hazzaa SME, Al-Beltagi M, Hamza MB. Salivary C-reactive protein and mean platelet volume as possible diagnostic markers for late-onset neonatal pneumonia. World J Clin Pediatr 2024; 13:88645. [DOI: 10.5409/wjcp.v13.i1.88645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Neonatal sepsis, a formidable threat to newborns, is a leading cause of neonatal mortality, with late-onset sepsis manifesting after 72 hours post-birth being particularly concerning. Pneumonia, a prevalent sepsis presentation, poses a significant risk, especially during the neonatal phase when lung defenses are compromised. Accurate diagnosis of pneumonia is imperative for timely and effective interventions. Saliva, a minimally invasive diagnostic medium, holds great promise for evaluating infections, especially in infants.
AIM To investigate the potential of serum C-reactive protein (CRP), salivary CRP (sCRP), and mean platelet volume (MPV) as diagnostic markers for late-onset neonatal pneumonia (LONP).
METHODS Eighty full-term neonates were systematically examined, considering anthropometric measurements, clinical manifestations, radiology findings, and essential biomarkers, including serum CRP, sCRP, and MPV.
RESULTS The study reveals noteworthy distinctions in serum CRP levels, MPV, and the serum CRP/MPV ratio between neonates with LONP and healthy controls. MPV exhibited a robust discriminatory ability [area under the curve (AUC) = 0.87] with high sensitivity and specificity at a cutoff value of > 8.8. Correlations between serum CRP, sCRP, and MPV were also identified. Notably, sCRP demonstrated excellent predictive value for serum CRP levels (AUC = 0.89), underscoring its potential as a diagnostic tool.
CONCLUSION This study underscores the diagnostic promise of salivary and serum biomarkers, specifically MPV and CRP, in identifying and predicting LONP among neonates. These findings advocate for further research to validate their clinical utility in larger neonatal cohorts.
Collapse
Affiliation(s)
- Wafaa Ahmed Metwali
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
| | | | - Sahar Mohey Eldin Hazzaa
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
| | - Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, Dr. Suliaman Al Habib Medical Group, Manama 26671, Manama, Bahrain
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
| | - Mohamed Basiony Hamza
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
| |
Collapse
|
9
|
Lin GL, Chang HH, Lin WT, Liou YS, Lai YL, Hsieh MH, Chen PK, Liao CY, Tsai CC, Wang TF, Chu SC, Kau JH, Huang HH, Hsu HL, Sun DS. Dachshund Homolog 1: Unveiling Its Potential Role in Megakaryopoiesis and Bacillus anthracis Lethal Toxin-Induced Thrombocytopenia. Int J Mol Sci 2024; 25:3102. [PMID: 38542074 PMCID: PMC10970148 DOI: 10.3390/ijms25063102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.
Collapse
Affiliation(s)
- Guan-Ling Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Wei-Ting Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yi-Ling Lai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Min-Hua Hsieh
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Po-Kong Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
| | - Chi-Yuan Liao
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Chi-Chih Tsai
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| |
Collapse
|
10
|
Yi T, Luo J, Liao R, Wang L, Wu A, Li Y, Zhou L, Ni C, Wang K, Tang X, Zou W, Wu J. An Innovative Inducer of Platelet Production, Isochlorogenic Acid A, Is Uncovered through the Application of Deep Neural Networks. Biomolecules 2024; 14:267. [PMID: 38540688 PMCID: PMC10968240 DOI: 10.3390/biom14030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Radiation-induced thrombocytopenia (RIT) often occurs in cancer patients undergoing radiation therapy, which can result in morbidity and even death. However, a notable deficiency exists in the availability of specific drugs designed for the treatment of RIT. (2) Methods: In our pursuit of new drugs for RIT treatment, we employed three deep learning (DL) algorithms: convolutional neural network (CNN), deep neural network (DNN), and a hybrid neural network that combines the computational characteristics of the two. These algorithms construct computational models that can screen compounds for drug activity by utilizing the distinct physicochemical properties of the molecules. The best model underwent testing using a set of 10 drugs endorsed by the US Food and Drug Administration (FDA) specifically for the treatment of thrombocytopenia. (3) Results: The Hybrid CNN+DNN (HCD) model demonstrated the most effective predictive performance on the test dataset, achieving an accuracy of 98.3% and a precision of 97.0%. Both metrics surpassed the performance of the other models, and the model predicted that seven FDA drugs would exhibit activity. Isochlorogenic acid A, identified through screening the Chinese Pharmacopoeia Natural Product Library, was subsequently subjected to experimental verification. The results indicated a substantial enhancement in the differentiation and maturation of megakaryocytes (MKs), along with a notable increase in platelet production. (4) Conclusions: This underscores the potential therapeutic efficacy of isochlorogenic acid A in addressing RIT.
Collapse
Affiliation(s)
- Taian Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.Y.); (Y.L.)
| | - Jiesi Luo
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Ruixue Liao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
| | - Yueyue Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.Y.); (Y.L.)
| | - Ling Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
| | - Chengyang Ni
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
| | - Kai Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
| | - Xiaoqin Tang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.Y.); (Y.L.)
| | - Jianming Wu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China (L.W.); (A.W.); (L.Z.); (C.N.); (K.W.); (X.T.)
- The Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology of Ministry of Education, Luzhou 646000, China
| |
Collapse
|
11
|
Pirabe A, Frühwirth S, Brunnthaler L, Hackl H, Schmuckenschlager A, Schrottmaier WC, Assinger A. Age-Dependent Surface Receptor Expression Patterns in Immature Versus Mature Platelets in Mouse Models of Regenerative Thrombocytopenia. Cells 2023; 12:2419. [PMID: 37830633 PMCID: PMC10571991 DOI: 10.3390/cells12192419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Aging is a multifaceted process that unfolds at both the individual and cellular levels, resulting in changes in platelet count and platelet reactivity. These alterations are influenced by shifts in platelet production, as well as by various environmental factors that affect circulating platelets. Aging also triggers functional changes in platelets, including a reduction in RNA content and protein production capacity. Older individuals and RNA-rich immature platelets often exhibit hyperactivity, contributing significantly to pathologic conditions such as cardiovascular diseases, sepsis, and thrombosis. However, the impact of aging on surface receptor expression of circulating platelets, particularly whether these effects vary between immature and mature platelets, remains largely unexplored. Thus, we investigated the expression of certain surface and activation receptors on platelets from young and old mice as well as on immature and mature platelets from mouse models of regenerative thrombocytopenia by flow cytometry. Our findings indicate that aged mice show an upregulated expression of the platelet endothelial cell adhesion molecule-1 (CD31), tetraspanin-29 (CD9), and Toll-like receptor 2 (TLR2) compared to their younger counterparts. Interestingly, when comparing immature and mature platelets in both young and old mice, no differences were observed in mature platelets. However, immature platelets from young mice displayed higher surface expression compared to immature platelets from old mice. Additionally, in mouse models of regenerative thrombocytopenia, the majority of receptors were upregulated in immature platelets. These results suggest that distinct surface receptor expressions are increased on platelets from old mice and immature platelets, which may partially explain their heightened activity and contribute to an increased thrombotic risk.
Collapse
Affiliation(s)
- Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Frühwirth
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Laura Brunnthaler
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Waltraud C. Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Song H, Li J, Peng C, Liu D, Mei Z, Yang Z, Tian X, Zhang X, Jing Q, Yan C, Han Y. The role of CREG1 in megakaryocyte maturation and thrombocytopoiesis. Int J Biol Sci 2023; 19:3614-3627. [PMID: 37496998 PMCID: PMC10367557 DOI: 10.7150/ijbs.78660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Abnormal megakaryocyte maturation and platelet production lead to platelet-related diseases and impact the dynamic balance between hemostasis and bleeding. Cellular repressor of E1A-stimulated gene 1 (CREG1) is a glycoprotein that promotes tissue differentiation. However, its role in megakaryocytes remains unclear. In this study, we found that CREG1 protein is expressed in platelets and megakaryocytes and was decreased in the platelets of patients with thrombocytopenia. A cytosine arabinoside-induced thrombocytopenia mouse model was established, and the mRNA and protein expression levels of CREG1 were found to be reduced in megakaryocytes. We established megakaryocyte/platelet conditional knockout (Creg1pf4-cre) and transgenic mice (tg-Creg1). Compared to Creg1fl/fl mice, Creg1pf4-cre mice exhibited thrombocytopenia, which was mainly caused by inefficient bone marrow (BM) thrombocytopoiesis, but not by apoptosis of circulating platelets. Cultured Creg1pf4-cre-megakaryocytes exhibited impairment of the actin cytoskeleton, with less filamentous actin, significantly fewer proplatelets, and lower ploidy. CREG1 directly interacts with MEK1/2 and promotes MEK1/2 phosphorylation. Thus, our study uncovered the role of CREG1 in the regulation of megakaryocyte maturation and thrombopoiesis, and it provides a possible theoretical basis for the prevention and treatment of thrombocytopenia.
Collapse
Affiliation(s)
- HaiXu Song
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jiayin Li
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
- Northeastern University, Shenyang, China
| | - Chengfei Peng
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhu Mei
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zheming Yang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
- Northeastern University, Shenyang, China
| | - Xiaoxiang Tian
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Quanmin Jing
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
13
|
Sun Z, Wang B, Shen Y, Ma K, Wang T, Wang Y, Lin D. MXRA7 is involved in megakaryocyte differentiation and platelet production. BLOOD SCIENCE 2023; 5:160-169. [PMID: 37546710 PMCID: PMC10400050 DOI: 10.1097/bs9.0000000000000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Matrix remodeling is a critical process in hematopoiesis. The biology of MXRA7, as a matrix remodeling associated gene, has still not been reported in hematopoietic process. Public databases showed that MXRA7 expressed in hematopoietic stem cells, suggesting that it may be involved in hematopoiesis. We found that the amounts of megakaryocytes were lower in bone marrow and spleen from Mxra7-/- mice compared with that from wild-type mice. Knock-out of MXRA7 also reduced the amount of platelet in peripheral blood and affected the function of platelets. Knock-out of MXRA7 inhibited hematopoietic stem/progenitor cells differentiate to megakaryocytes possibly through down-regulating the expression of GATA-1 and FOG-1. Moreover, knockdown of MXRA7 in MEG-01 cells could inhibit the cell proliferation and cell apoptosis. Knockdown of MXRA7 inhibited the differentiation of MEG-01 cells and proplatelet formation through suppressing the ERK/MAPK signaling pathway and the expression of β-tubulin. In conclusion, the current study demonstrated the potential significance of MXRA7 in megakaryocyte differentiation and platelet production. The novel findings proposed a new target for the treatment of platelet-related diseases, and much more investigations are guaranteed to dissect the mechanisms of MXRA7 in megakaryocyte differentiation and platelet production.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Benfang Wang
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
- Department of Clinical Laboratory, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin 214400, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Kunpeng Ma
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Ting Wang
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Yiqiang Wang
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
15
|
Bomfim BCM, Azevedo-Silva J, Caminha G, Santos JPR, Pelajo-Machado M, de Paula Ayres-Silva J. Lectin-based carbohydrate profile of megakaryocytes in murine fetal liver during development. Sci Rep 2023; 13:6729. [PMID: 37185919 PMCID: PMC10130079 DOI: 10.1038/s41598-023-32863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Hematopoiesis is the process by which blood cells are generated. During embryonic development, these cells migrate through different organs until they reach the bone marrow, their definitive place in adulthood. Around E10.5, the fetal liver starts budding from the gut, where first hematopoietic cells arrive and expand. Hematopoietic cell migration occurs through cytokine stimulation, receptor expression, and glycosylation patterns on the cell surface. In addition, carbohydrates can modulate different cell activation states. For this reason, we aimed to characterize and quantify fetal megakaryocytic cells in mouse fetal liver according to their glycan residues at different gestational ages through lectins. Mouse fetuses between E11.5 and E18.5 were formalin-fixed and, paraffin-embedded, for immunofluorescence analysis using confocal microscopy. The results showed that the following sugar residues were expressed in proliferating and differentiating megakaryocytes in the fetal liver at different gestational ages: α-mannose, α-glucose, galactose, GlcNAc, and two types of complex oligosaccharides. Megakaryocytes also showed three proliferation waves during liver development at E12.5, E14.5, and E18.5. Additionally, the lectins that exhibited high and specific pattern intensities at liver capsules and vessels were shown to be a less time-consuming and robust alternative alternative to conventional antibodies for displaying liver structures such as capsules and vessels, as well as for megakaryocyte differentiation in the fetal liver.
Collapse
Affiliation(s)
| | - Jessyca Azevedo-Silva
- Laboratory of Pathology, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Giulia Caminha
- Laboratory of Pathology, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo-Machado
- Laboratory of Pathology, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Meanwell NA. Anagrelide: A Clinically Effective cAMP Phosphodiesterase 3A Inhibitor with Molecular Glue Properties. ACS Med Chem Lett 2023; 14:350-361. [PMID: 37077378 PMCID: PMC10108399 DOI: 10.1021/acsmedchemlett.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The mode of action by which the orphan drug anagrelide (1), a potent cAMP phosphodiesterase 3A inhibitor, reduces blood platelet count in humans is not well understood. Recent studies indicate that 1 stabilizes a complex between PDE3A and Schlafen 12, protecting it from degradation while activating its RNase activity.
Collapse
Affiliation(s)
- Nicholas A. Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
17
|
Heazlewood SY, Ahmad T, Cao B, Cao H, Domingues M, Sun X, Heazlewood CK, Li S, Williams B, Fulton M, White JF, Nebl T, Nefzger CM, Polo JM, Kile BT, Kraus F, Ryan MT, Sun YB, Choong PFM, Ellis SL, Anko ML, Nilsson SK. High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production. Nat Commun 2023; 14:2099. [PMID: 37055407 PMCID: PMC10102126 DOI: 10.1038/s41467-023-37780-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model (Pf4-Srsf3Δ/Δ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans.
Collapse
Affiliation(s)
- Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Tanveer Ahmad
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Huimin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Melanie Domingues
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Songhui Li
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Madeline Fulton
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jacinta F White
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Tom Nebl
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Christian M Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Felix Kraus
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michael T Ryan
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Yu B Sun
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
| | - Peter F M Choong
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
- Bone and Soft Tissue Sarcoma Service, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Orthopaedics, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Sarah L Ellis
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Minna-Liisa Anko
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Wang J, Liu X, Wang H, Qin L, Feng A, Qi D, Wang H, Zhao Y, Kong L, Wang H, Wang L, Hu Z, Xu X. JMJD1C Regulates Megakaryopoiesis in In Vitro Models through the Actin Network. Cells 2022; 11:cells11223660. [PMID: 36429088 PMCID: PMC9688414 DOI: 10.3390/cells11223660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The histone demethylase JMJD1C is associated with human platelet counts. The JMJD1C knockout in zebrafish and mice leads to the ablation of megakaryocyte-erythroid lineage anemia. However, the specific expression, function, and mechanism of JMJD1C in megakaryopoiesis remain unknown. Here, we used cell line models, cord blood cells, and thrombocytopenia samples, to detect the JMJD1C expression. ShRNA of JMJD1C and a specific peptide agonist of JMJD1C, SAH-JZ3, were used to explore the JMJD1C function in the cell line models. The actin ratio in megakaryopoiesis for the JMJDC modulation was also measured. Mass spectrometry was used to identify the JMJD1C-interacting proteins. We first show the JMJD1C expression difference in the PMA-induced cell line models, the thrombopoietin (TPO)-induced megakaryocyte differentiation of the cord blood cells, and also the thrombocytopenia patients, compared to the normal controls. The ShRNA of JMJD1C and SAH-JZ3 showed different effects, which were consistent with the expression of JMJD1C in the cell line models. The effort to find the underlying mechanism of JMJD1C in megakaryopoiesis, led to the discovery that SAH-JZ3 decreases F-actin in K562 cells and increases F-actin in MEG-01 cells. We further performed mass spectrometry to identify the potential JMJD1C-interacting proteins and found that the important Ran GTPase interacts with JMJD1C. To sum up, JMJD1C probably regulates megakaryopoiesis by influencing the actin network.
Collapse
Affiliation(s)
- Jialing Wang
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaodan Liu
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Haixia Wang
- Department of Blood Transfusion, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Lili Qin
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Anhua Feng
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Daoxin Qi
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Haihua Wang
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yao Zhao
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Lihua Kong
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Haiying Wang
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Lin Wang
- The School of Physics and Electronic Information, Weifang University, Weifang 261061, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- Correspondence: (Z.H.); (X.X.)
| | - Xin Xu
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
- Correspondence: (Z.H.); (X.X.)
| |
Collapse
|
19
|
Tahiroglu V, Kara F. Effects of acute inflammation on platelet indices: An experimental study. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and objective: It is well known that inflammation may affect the platelets. However, there are inconsistencies between the results of observational studies investigating changes in platelet indices in inflammatory conditions. This study aimed to investigate the possible effects of acute inflammation on platelet indices in plantar inflammation model in rats.
Methods: A total of 10 rats, 5 in each group, were used in the study. Lambda-carrageenan and saline were applied subcutaneously to the right hind paw of the rats in the inflammation group and in the control group, respectively. Six hours after the administration, blood samples were taken from femoral arteries and femoral veins, and platelet indices were measured by a hematology analyzer. In addition, plantar tissue samples belonging to the control and inflammation groups were evaluated histopathologically.
Results: On histopathological examination, no pathological condition was observed in the control group, while there were changes consistent with acute inflammation in the lambda-carrageenan-injected group. There was no significant difference in terms of platelet indices between both the arterial and vein samples and between the control and inflammation groups.
Conclusions: Our results suggest that platelet indices cannot be used in the diagnosis of acute inflammatory conditions. However, in our opinion, these findings must not be interpreted as that acute inflammation does not affect platelet number and volume. Instead, we believe that it may be more appropriate to say that acute inflammation does not produce a quantitatively significant change in platelet indices due to the combination of the opposite effects.
Collapse
|
20
|
Systemic lupus erythematosus-complicating immune thrombocytopenia: From pathogenesis to treatment. J Autoimmun 2022; 132:102887. [PMID: 36030136 DOI: 10.1016/j.jaut.2022.102887] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Immune thrombocytopenia (ITP) is a common hematological manifestation of systemic lupus erythematosus (SLE). The heterogeneity of its clinical characteristics and therapeutic responses reflects a complex pathogenesis. A better understanding of its pathophysiological mechanisms and employing an optimal treatment regimen is therefore important to improve the response rate and prognosis, and avoid unwanted outcomes. Besides glucocorticoids, traditional immunosuppressants (i.e. cyclosporine, mycophenolate mofetil) and intravenous immunoglobulins, new therapies are emerging and promising for the treatment of intractable SLE-ITP, such as thrombopoietin receptor agonists (TPO-RAs), platelet desialylation inhibitors(i.e. oseltamivir), B-cell targeting therapy(i.e. rituximab, belimumab), neonatal Fc receptor(FcRn) inhibitor, spleen tyrosine kinase(Syk) inhibitor and Bruton tyrosine kinase(BTK) inhibitor et al., although more rigorous randomized controlled trials are needed to substantiate their efficacy. In this review, we update our current knowledge on the pathogenesis and treatment of SLE-ITP.
Collapse
|
21
|
Wunderlich F, Delic D, Gerovska D, Araúzo-Bravo MJ. Vaccination Accelerates Liver-Intrinsic Expression of Megakaryocyte-Related Genes in Response to Blood-Stage Malaria. Vaccines (Basel) 2022; 10:vaccines10020287. [PMID: 35214745 PMCID: PMC8880532 DOI: 10.3390/vaccines10020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Erythropoiesis and megakaryo-/thrombopoiesis occur in the bone marrow proceeding from common, even bipotent, progenitor cells. Recently, we have shown that protective vaccination accelerates extramedullary hepatic erythroblastosis in response to blood-stage malaria of Plasmodium chabaudi. Here, we investigated whether protective vaccination also accelerates extramedullary hepatic megakaryo-/thrombopoiesis. Female Balb/c mice were twice vaccinated with a non-infectious vaccine before infecting with 106 P. chabaudi-parasitized erythrocytes. Using gene expression microarrays and quantitative real-time PCR, transcripts of genes known to be expressed in the bone marrow by cells of the megakaryo-/thrombocytic lineage were compared in livers of vaccination-protected and unprotected mice on days 0, 1, 4, 8, and 11 p.i. Livers of vaccination-protected mice responded with expression of megakaryo-/thrombocytic genes faster to P. chabaudi than those of unvaccinated mice, evidenced at early patency on day 4 p.i., when livers exhibited significantly higher levels of malaria-induced transcripts of the genes Selp and Pdgfb (p-values < 0.0001), Gp5 (p-value < 0.001), and Fli1, Runx1, Myb, Mpl, Gp1ba, Gp1bb, Gp6, Gp9, Pf4, and Clec1b (p-values < 0.01). Together with additionally analyzed genes known to be related to megakaryopoiesis, our data suggest that protective vaccination accelerates liver-intrinsic megakaryo-/thrombopoiesis in response to blood-stage malaria that presumably contributes to vaccination-induced survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Heidelberg, Germany
- Correspondence: (D.D.); (M.J.A.-B.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Correspondence: (D.D.); (M.J.A.-B.)
| |
Collapse
|
22
|
Lelcu T, Bînă AM, Dănilă MD, Popoiu CM, Aburel OM, Arghirescu ST, Borza C, Muntean DM. Assessment of Platelet Mitochondrial Respiration in a Pediatric Population: A Pilot Study in Healthy Children and Children with Acute Lymphoblastic Leukemia. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121196. [PMID: 34943392 PMCID: PMC8700085 DOI: 10.3390/children8121196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
Characterization of mitochondrial respiration in peripheral blood cells has recently emerged as a potential biomarker for the assessment of the severity of hematological malignancies (HM) in adults. Whether changes in platelet respiratory function occur in children with or without HM it is unknown. The present pilot study was double-aimed: (i) to investigate whether platelet respiration is age-dependent in non-HM children and (ii) to assess the platelet mitochondrial respiration in children with newly diagnosed acute lymphoblastic leukemia (ALL). Blood samples obtained from age-grouped children (10–11, 13–14 and 16–17 years) with non-HM and children with ALL (10–11 years) were used to isolate platelets via differential centrifugation. High-resolution respirometry studies of isolated platelets were performed according to a protocol adapted to evaluate complex I and II-supported respiration. An age-related decrease in respiration was observed in the non-HM pediatric population and had comparable values for the 13–14 and 16–17 years. groups. In children with ALL, a significant increase in C I-supported active respiration and decrease in maximal noncoupled respiration were found at the disease onset. In conclusion, in a pediatric population, platelet mitochondrial respiration is age-dependent. Platelet respiratory dysfunction occurs in children with newly-diagnosed ALL, an observation that warrants further investigation of this change as a disease biomarker.
Collapse
Affiliation(s)
- Theia Lelcu
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Anca M. Bînă
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Maria D. Dănilă
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Călin M. Popoiu
- Department XI Pediatrics, Discipline Pediatric Surgery, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department XI Pediatrics, Discipline Pediatrics III, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Oana M. Aburel
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Smaranda T. Arghirescu
- Department XI Pediatrics, Discipline Pediatrics III, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- “Louis Țurcanu” Emergency Hospital for Children, 300011 Timișoara, Romania
- Correspondence: (S.T.A.); (C.B.)
| | - Claudia Borza
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- Correspondence: (S.T.A.); (C.B.)
| | - Danina M. Muntean
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|